Nguyen Long C, Renner David M, Silva Diane, Yang Dongbo, Parenti Nicholas, Medina Kaeri M, Nicolaescu Vlad, Gula Haley, Drayman Nir, Valdespino Andrea, Mohamed Adil, Dann Christopher, Wannemo Kristin, Robinson-Mailman Lydia, Gonzalez Alan, Stock Letícia, Cao Mengrui, Qiao Zeyu, Moellering Raymond E, Tay Savas, Randall Glenn, Beers Michael F, Rosner Marsha Rich, Oakes Scott A, Weiss Susan R
Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A.
Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
bioRxiv. 2022 Jun 13:2021.12.30.474519. doi: 10.1101/2021.12.30.474519.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available, or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system.
SARS-CoV-2 is the third lethal respiratory coronavirus after MERS-CoV and SARS-CoV to emerge this century, causing millions of deaths world-wide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)已在全球导致600多万人死亡,并且在疫苗尚未广泛接种或民众对接种疫苗犹豫不决的国家仍在继续传播。因此,弄清楚SARS-CoV-2和其他冠状病毒感染并掌控人类细胞宿主机制的分子机制至关重要。冠状病毒复制会引发内质网(ER)应激并激活未折叠蛋白反应(UPR),这是一种被广泛认为对病毒复制至关重要的关键宿主细胞途径。我们在感染β冠状病毒的人肺源细胞中研究了UPR的主要传感器IRE1α激酶/核糖核酸酶及其下游转录因子效应物XBP1s,后者是通过IRE1α介导的mRNA剪接事件产生的。我们发现人类呼吸道冠状病毒OC43(HCoV-OC43)、中东呼吸综合征冠状病毒(MERS-CoV)和鼠冠状病毒(MHV)均会诱导内质网应激,并强烈触发IRE1α的激酶和核糖核酸酶活性以及XBP1剪接。相比之下,SARS-CoV-2仅通过自身磷酸化部分激活IRE1α,但其核糖核酸酶活性无法剪接XBP1。此外,虽然IRE1α对于所有测试冠状病毒在人细胞中的复制并非必需,但在SARS-CoV-2感染期间,它对于与包括干扰素信号通路在内的几种关键细胞功能相关基因的最大表达是必需的。我们的数据表明,SARS-CoV-2可能通过主动抑制自身磷酸化的IRE1α的核糖核酸酶,作为逃避宿主免疫系统检测的一种策略。
SARS-CoV-2是本世纪继MERS-CoV和SARS-CoV之后出现的第三种致命性呼吸道冠状病毒,在全球造成数百万人死亡。其他常见冠状病毒,如HCoV-OC43,引起的呼吸道疾病相对较轻。因此,了解这些病毒在与宿主细胞相互作用方式上的异同至关重要。我们在此聚焦于肌醇需求酶1α(IRE1α)途径,这是宿主对病毒诱导应激的未折叠蛋白反应的一部分。我们发现,虽然MERS-CoV和HCoV-OC43会完全激活IRE1α激酶和核糖核酸酶活性,但SARS-CoV-2仅部分激活IRE1α,促进其激酶活性但不促进核糖核酸酶活性。基于感染期间IRE1α依赖性基因表达的变化,我们提出SARS-CoV-2阻止IRE1α核糖核酸酶激活是限制宿主免疫系统检测的一种策略。