Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States.
PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Am J Physiol Lung Cell Mol Physiol. 2024 Aug 1;327(2):L232-L249. doi: 10.1152/ajplung.00324.2023. Epub 2024 Jun 11.
COVID-19 syndrome is characterized by acute lung injury, hypoxemic respiratory failure, and high mortality. Alveolar type 2 (AT2) cells are essential for gas exchange, repair, and regeneration of distal lung epithelium. We have shown that the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and other members of the β-coronavirus genus induce an endoplasmic reticulum (ER) stress response in vitro; however, the consequences for host AT2 cell function in vivo are less understood. To study this, two murine models of coronavirus infection were used-mouse hepatitis virus-1 (MHV-1) in A/J mice and a mouse-adapted SARS-CoV-2 strain. MHV-1-infected mice exhibited dose-dependent weight loss with histological evidence of distal lung injury accompanied by elevated bronchoalveolar lavage fluid (BALF) cell counts and total protein. AT2 cells showed evidence of both viral infection and increased BIP/GRP78 expression, consistent with activation of the unfolded protein response (UPR). The AT2 UPR included increased inositol-requiring enzyme 1α (IRE1α) signaling and a biphasic response in PKR-like ER kinase (PERK) signaling accompanied by marked reductions in AT2 and BALF surfactant protein (SP-B and SP-C) content, increases in surfactant surface tension, and emergence of a reprogrammed epithelial cell population ( and ). The loss of a homeostatic AT2 cell state was attenuated by treatment with the IRE1α inhibitor OPK-711. As a proof-of-concept, C57BL6 mice infected with mouse-adapted SARS-CoV-2 demonstrated similar lung injury and evidence of disrupted surfactant homeostasis. We conclude that lung injury from β-coronavirus infection results from an aberrant host response, activating multiple AT2 UPR stress pathways, altering surfactant metabolism/function, and changing AT2 cell state, offering a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and acute respiratory failure. COVID-19 syndrome is characterized by hypoxemic respiratory failure and high mortality. In this report, we use two murine models to show that β-coronavirus infection produces acute lung injury, which results from an aberrant host response, activating multiple epithelial endoplasmic reticular stress pathways, disrupting pulmonary surfactant metabolism and function, and forcing emergence of an aberrant epithelial transition state. Our results offer a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and respiratory failure.
COVID-19 综合征的特征是急性肺损伤、低氧性呼吸衰竭和高死亡率。肺泡 II 型(AT2)细胞对于气体交换、远端肺上皮的修复和再生至关重要。我们已经表明,病原体严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)和β-冠状病毒属的其他成员在体外诱导内质网(ER)应激反应;然而,宿主 AT2 细胞功能在体内的后果了解较少。为了研究这一点,我们使用了两种冠状病毒感染的小鼠模型——小鼠肝炎病毒-1(MHV-1)在 A/J 小鼠和一种适应小鼠的 SARS-CoV-2 株。MHV-1 感染的小鼠表现出剂量依赖性的体重减轻,伴有远端肺损伤的组织学证据,同时伴有支气管肺泡灌洗液(BALF)细胞计数和总蛋白升高。AT2 细胞表现出病毒感染和 BIP/GRP78 表达增加的证据,这与未折叠蛋白反应(UPR)的激活一致。AT2 UPR 包括肌醇需求酶 1α(IRE1α)信号的增加和蛋白激酶 R 样内质网激酶(PERK)信号的两相反应,同时伴随着 AT2 和 BALF 表面活性蛋白(SP-B 和 SP-C)含量的显著减少、表面张力的增加以及重新编程的上皮细胞群的出现( 和 )。IRE1α 抑制剂 OPK-711 的治疗减轻了平衡 AT2 细胞状态的丧失。作为概念验证,感染适应小鼠的 SARS-CoV-2 的 C57BL6 小鼠表现出类似的肺损伤和表面活性剂动态失衡的证据。我们得出结论,β-冠状病毒感染引起的肺损伤是由宿主异常反应引起的,激活了多个 AT2 UPR 应激途径,改变了表面活性剂的代谢/功能,并改变了 AT2 细胞状态,为 SARS-CoV-2 感染、AT2 细胞生物学和急性呼吸衰竭之间提供了一种机制联系。COVID-19 综合征的特征是低氧性呼吸衰竭和高死亡率。在本报告中,我们使用两种小鼠模型表明,β-冠状病毒感染会导致急性肺损伤,这是由宿主异常反应引起的,激活了多个上皮内质网应激途径,破坏了肺表面活性剂的代谢和功能,并迫使异常上皮过渡状态的出现。我们的结果提供了 SARS-CoV-2 感染、AT2 细胞生物学和呼吸衰竭之间的机制联系。