Suppr超能文献

营养摄取改变导致2型糖尿病期间衰老CD8 EMRA T细胞线粒体功能障碍。

Altered Nutrient Uptake Causes Mitochondrial Dysfunction in Senescent CD8 EMRA T Cells During Type 2 Diabetes.

作者信息

Callender Lauren A, Carroll Elizabeth C, Garrod-Ketchley Conor, Schroth Johannes, Bystrom Jonas, Berryman Victoria, Pattrick Melanie, Campbell-Richards Desiree, Hood Gillian A, Hitman Graham A, Finer Sarah, Henson Sian M

机构信息

William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.

Barts Health NHS Trust, London, United Kingdom.

出版信息

Front Aging. 2021 Aug 13;2:681428. doi: 10.3389/fragi.2021.681428. eCollection 2021.

Abstract

Mitochondrial health and cellular metabolism can heavily influence the onset of senescence in T cells. CD8 EMRA T cells exhibit mitochondrial dysfunction and alterations to oxidative phosphorylation, however, the metabolic properties of senescent CD8 T cells from people living with type 2 diabetes (T2D) are not known. We show here that mitochondria from T2D CD8 T cells had a higher oxidative capacity together with increased levels of mitochondrial reactive oxgen species (mtROS), compared to age-matched control cells. While fatty acid uptake was increased, fatty acid oxidation was impaired in T2D CD8 EMRA T cells, which also showed an accumulation of lipid droplets and decreased AMPK activity. Increasing glucose and fatty acids in healthy CD8 T cells resulted in increased p-p53 expression and a fragmented mitochondrial morphology, similar to that observed in T2D CD8 EMRA T cells. The resulting mitochondrial changes are likely to have a profound effect on T cell function. Consequently, a better understanding of these metabolic abnormalities is crucial as metabolic manipulation of these cells may restore correct T cell function and help reduce the impact of T cell dysfunction in T2D.

摘要

线粒体健康和细胞代谢会严重影响T细胞衰老的发生。CD8 EMRA T细胞表现出线粒体功能障碍和氧化磷酸化改变,然而,2型糖尿病(T2D)患者衰老CD8 T细胞的代谢特性尚不清楚。我们在此表明,与年龄匹配的对照细胞相比,T2D CD8 T细胞的线粒体具有更高的氧化能力以及线粒体活性氧(mtROS)水平升高。虽然脂肪酸摄取增加,但T2D CD8 EMRA T细胞中的脂肪酸氧化受损,这些细胞还表现出脂滴积累和AMPK活性降低。在健康CD8 T细胞中增加葡萄糖和脂肪酸会导致p-p53表达增加和线粒体形态碎片化,类似于在T2D CD8 EMRA T细胞中观察到的情况。由此产生的线粒体变化可能对T细胞功能产生深远影响。因此,更好地理解这些代谢异常至关重要,因为对这些细胞进行代谢调控可能恢复正确的T细胞功能,并有助于减少T细胞功能障碍在T2D中的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e15/9261431/d3ff1d6915e0/fragi-02-681428-g001.jpg

相似文献

1
Altered Nutrient Uptake Causes Mitochondrial Dysfunction in Senescent CD8 EMRA T Cells During Type 2 Diabetes.
Front Aging. 2021 Aug 13;2:681428. doi: 10.3389/fragi.2021.681428. eCollection 2021.
2
Mitochondrial mass governs the extent of human T cell senescence.
Aging Cell. 2020 Feb;19(2):e13067. doi: 10.1111/acel.13067. Epub 2019 Dec 2.
3
Diabetes and branched-chain amino acids: What is the link?
J Diabetes. 2018 May;10(5):350-352. doi: 10.1111/1753-0407.12645. Epub 2018 Feb 13.
5
The Causal Role of Mitochondrial Dynamics in Regulating Innate Immunity in Diabetes.
Front Endocrinol (Lausanne). 2020 Jul 29;11:445. doi: 10.3389/fendo.2020.00445. eCollection 2020.
6
T-cell senescence contributes to abnormal glucose homeostasis in humans and mice.
Cell Death Dis. 2019 Mar 13;10(3):249. doi: 10.1038/s41419-019-1494-4.
8
Blockade of PD-1 or p38 MAP kinase signaling enhances senescent human CD8(+) T-cell proliferation by distinct pathways.
Eur J Immunol. 2015 May;45(5):1441-51. doi: 10.1002/eji.201445312. Epub 2015 Mar 30.
9
Human CD8 EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK.
Aging Cell. 2018 Feb;17(1). doi: 10.1111/acel.12675. Epub 2017 Oct 12.

引用本文的文献

1
Immunosenescence and the Geriatric Giants: Molecular Insights into Aging and Healthspan.
Med Sci (Basel). 2025 Jul 28;13(3):100. doi: 10.3390/medsci13030100.
2
Age-related diseases as a testbed for anti-aging therapeutics: the case of idiopathic pulmonary fibrosis.
Aging (Albany NY). 2025 Aug 16;17(8):1911-1928. doi: 10.18632/aging.206301.
3
Immune age is correlated with decreased TCR clonal diversity and antibody response to SARS-CoV-2.
Sci Rep. 2025 Jun 6;15(1):19883. doi: 10.1038/s41598-025-04736-4.
5
T Cell Aging: An Important Target for Perioperative Immunomodulation.
Clin Interv Aging. 2025 May 1;20:537-557. doi: 10.2147/CIA.S519438. eCollection 2025.
6
Metabolic reprogramming in T cell senescence: a novel strategy for cancer immunotherapy.
Cell Death Discov. 2025 Apr 9;11(1):161. doi: 10.1038/s41420-025-02468-y.
7
Impact of hyperglycemia on immune cell function: a comprehensive review.
Diabetol Int. 2024 Aug 12;15(4):745-760. doi: 10.1007/s13340-024-00741-6. eCollection 2024 Oct.
8
T-Cell Senescence in Human Metabolic Diseases.
Diabetes Metab J. 2024 Sep;48(5):864-881. doi: 10.4093/dmj.2024.0140. Epub 2024 Aug 28.
9
Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases.
Front Immunol. 2024 Mar 15;15:1360065. doi: 10.3389/fimmu.2024.1360065. eCollection 2024.

本文引用的文献

1
β cell aging and age-related diabetes.
Aging (Albany NY). 2021 Mar 3;13(5):7691-7706. doi: 10.18632/aging.202593.
2
Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders.
Science. 2021 Jan 15;371(6526):265-270. doi: 10.1126/science.abb5916.
3
Sestrins induce natural killer function in senescent-like CD8 T cells.
Nat Immunol. 2020 Jun;21(6):684-694. doi: 10.1038/s41590-020-0643-3. Epub 2020 Mar 30.
4
A proteomic atlas of senescence-associated secretomes for aging biomarker development.
PLoS Biol. 2020 Jan 16;18(1):e3000599. doi: 10.1371/journal.pbio.3000599. eCollection 2020 Jan.
5
Mitochondrial mass governs the extent of human T cell senescence.
Aging Cell. 2020 Feb;19(2):e13067. doi: 10.1111/acel.13067. Epub 2019 Dec 2.
6
Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK.
Cell Rep. 2019 Nov 5;29(6):1511-1523.e5. doi: 10.1016/j.celrep.2019.09.070.
7
Cell generation dynamics underlying naive T-cell homeostasis in adult humans.
PLoS Biol. 2019 Oct 29;17(10):e3000383. doi: 10.1371/journal.pbio.3000383. eCollection 2019 Oct.
8
Expression and regulation of telomerase in human T cell differentiation, activation, aging and diseases.
Cell Immunol. 2019 Nov;345:103989. doi: 10.1016/j.cellimm.2019.103989. Epub 2019 Sep 19.
9
Fatty Acid Metabolites Combine with Reduced β Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes.
Cell Metab. 2019 Sep 3;30(3):447-461.e5. doi: 10.1016/j.cmet.2019.07.004. Epub 2019 Aug 1.
10
Type 2 diabetes is associated with the accumulation of senescent T cells.
Clin Exp Immunol. 2019 Aug;197(2):205-213. doi: 10.1111/cei.13344. Epub 2019 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验