Galkin Fedor, Kochetov Kirill, Mamoshina Polina, Zhavoronkov Alex
Deep Longevity Limited, Hong Kong, China.
Insilico Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong, China.
Front Aging. 2021 Jul 29;2:697254. doi: 10.3389/fragi.2021.697254. eCollection 2021.
DeepMAge is a deep-learning DNA methylation aging clock that measures the organismal pace of aging with the information from human epigenetic profiles. In blood samples, DeepMAge can predict chronological age within a 2.8 years error margin, but in saliva samples, its performance is drastically reduced since aging clocks are restricted by the training set domain. However, saliva is an attractive fluid for genomic studies due to its availability, compared to other tissues, including blood. In this article, we display how cell type deconvolution and elastic net can be used to expand the domain of deep aging clocks to other tissues. Using our approach, DeepMAge's error in saliva samples was reduced from 20.9 to 4.7 years with no retraining.
DeepMAge是一种深度学习DNA甲基化衰老时钟,它利用人类表观遗传图谱中的信息来衡量生物体的衰老速度。在血液样本中,DeepMAge能够在误差范围为2.8年的情况下预测实际年龄,但在唾液样本中,由于衰老时钟受训练集领域的限制,其性能会大幅下降。然而,与包括血液在内的其他组织相比,唾液因其易于获取,是基因组研究中一种颇具吸引力的液体。在本文中,我们展示了如何使用细胞类型反卷积和弹性网络将深度衰老时钟的领域扩展到其他组织。采用我们的方法,在无需重新训练的情况下,DeepMAge在唾液样本中的误差从20.9年降至4.7年。