Galkin Fedor, Mamoshina Polina, Kochetov Kirill, Sidorenko Denis, Zhavoronkov Alex
1Deep Longevity Limited, Hong Kong.
2Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
Aging Dis. 2021 Aug 1;12(5):1252-1262. doi: 10.14336/AD.2020.1202. eCollection 2021 Aug.
DNA methylation aging clocks have become an invaluable tool in biogerontology research since their inception in 2013. Today, a variety of machine learning approaches have been tested for the purpose of predicting human age based on molecular-level features. Among these, deep learning, or neural networks, is an especially promising approach that has been used to construct accurate clocks using blood biochemistry, transcriptomics, and microbiomics data-feats unachieved by other algorithms. In this article, we explore how deep learning performs in a DNA methylation setting and compare it to the current industry standard-the 353 CpG clock published in 2013. The aging clock we are presenting (DeepMAge) is a neural network regressor trained on 4,930 blood DNA methylation profiles from 17 studies. Its absolute median error was 2.77 years in an independent verification set of 1,293 samples from 15 studies. DeepMAge shows biological relevance by assigning a higher predicted age to people with various health-related conditions, such as ovarian cancer, irritable bowel diseases, and multiple sclerosis.
自2013年问世以来,DNA甲基化衰老时钟已成为生物老年学研究中一项极具价值的工具。如今,为了基于分子水平特征预测人类年龄,人们已经测试了多种机器学习方法。其中,深度学习(即神经网络)是一种特别有前景的方法,已被用于利用血液生物化学、转录组学和微生物组学数据构建精确的时钟,这是其他算法无法实现的壮举。在本文中,我们探讨了深度学习在DNA甲基化环境中的表现,并将其与当前的行业标准——2013年发布的353个CpG时钟进行比较。我们提出的衰老时钟(DeepMAge)是一个神经网络回归模型,它基于来自17项研究的4930份血液DNA甲基化图谱进行训练。在来自15项研究的1293个样本的独立验证集中,其绝对中位误差为2.77岁。DeepMAge通过为患有各种健康相关疾病(如卵巢癌、肠易激病和多发性硬化症)的人赋予更高的预测年龄,显示出生物学相关性。