He Bing, Sheng Hexuan, Liu Qian, Hu Zhifu, Wang Jingnan, Hu Xiaoqin, Yang Yingkui, Wang Yang, Li Zhen, Liu Xueqin
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China.
Chem Commun (Camb). 2022 Aug 2;58(62):8622-8625. doi: 10.1039/d2cc02725a.
Herein, we report a robust strategy to markedly promote charge separation and transfer electrodepositing ZnO nanosheets into a cross-linked porous three-dimensional reduced graphene oxide (3DrGO) network structure to form a ZnO/3DrGO photoanode. In addition to the high electrical conductivity and 3D porous architecture, the photothermal effect of 3DrGO activated by a near-infrared (NIR) laser or NIR light of solar radiation can be used to increase the temperature of the photoanodes , further enhancing the charge transfer efficiency of ZnO nanosheets. With the synergistic effect of 3DrGO, the photocurrent density of the ZnO/3DrGO photoanode (2.03 mA cm) is about three times higher than that of the pure ZnO photoanode (0.51 mA cm) at 1.23 V reversible reference electrode (V). This work provides an effective strategy for improving the PEC water splitting performance of photoanodes the incorporation of multifunctional 3D porous architecture rGO.
在此,我们报道了一种强有力的策略,通过将ZnO纳米片电沉积到交联多孔三维还原氧化石墨烯(3DrGO)网络结构中,显著促进电荷分离和转移,从而形成ZnO/3DrGO光阳极。除了高电导率和三维多孔结构外,由近红外(NIR)激光或太阳辐射的近红外光激活的3DrGO的光热效应可用于提高光阳极的温度,进一步提高ZnO纳米片的电荷转移效率。在3DrGO的协同作用下,ZnO/3DrGO光阳极在1.23V可逆参比电极(V)下的光电流密度(2.03 mA/cm²)比纯ZnO光阳极(0.51 mA/cm²)高出约三倍。这项工作为通过引入多功能三维多孔结构的rGO来提高光阳极的光电化学水分解性能提供了一种有效策略。