Park Hyoju, Jung Gang Seob, Ibrahim Khaled M, Lu Yang, Tai Kuo-Lun, Coupin Matthew, Warner Jamie H
Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States.
Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States.
ACS Nano. 2022 Jul 26;16(7):10260-10272. doi: 10.1021/acsnano.1c09019. Epub 2022 Jul 13.
Two-dimensional (2D) materials form heterostructures in both the lateral and vertical directions when two different materials are interfaced, but with totally different bonding mechanisms of covalent in-plane to van der Waal's layered interactions. Understanding how the competition between lateral and vertical forces influences the epitaxial growth is important for future materials development of complex mixed layered heterostructures. Here, we use atomic-resolution annular dark-field scanning transmission electron microscopy to study the detailed atomic arrangements at mixed 2D heterostructure interfaces composed of two semiconductors with distinctly different crystal symmetry and elemental composition, PdSe:MoS, in order to understand the role of different chemical bonds on the resultant epitaxy. PdSe is grown off the step edge in bilayer MoS, and the vertical and lateral epitaxial relationships of the PdSe-MoS heterostructures are investigated. We find that the similarity of geometry at the interface with one metal (Pd or Mo) atoms bonded with two chalcogens (S or Se) are the crucial factors to make the atomically stitched lateral junction of 2D heterostructures. In addition, the vertical van der Waal interactions that are normally dominant in layered materials can be overcome by in-plane forces if the interfacial atomic stitching is high in quality and low in defect density. This knowledge should help guide the approaches for improving the epitaxy in mixed 2D heterostructures and seamless stitching of in-plane 2D heterostructures with various complex monolayer structures.
当两种不同的材料相互接触时,二维(2D)材料会在横向和纵向形成异质结构,但共价面内键合与范德华层间相互作用的键合机制完全不同。了解横向和纵向力之间的竞争如何影响外延生长,对于未来复杂混合层状异质结构的材料开发至关重要。在这里,我们使用原子分辨率环形暗场扫描透射电子显微镜来研究由具有明显不同晶体对称性和元素组成的两种半导体PdSe₂:MoS₂构成的混合二维异质结构界面处的详细原子排列,以了解不同化学键在所得外延中的作用。PdSe₂在双层MoS₂的台阶边缘外延生长,并研究了PdSe₂-MoS₂异质结构的纵向和横向外延关系。我们发现,界面处一个金属(Pd或Mo)原子与两个硫族元素(S或Se)键合的几何相似性是形成二维异质结构原子级缝合横向结的关键因素。此外,如果界面原子缝合质量高且缺陷密度低,则平面内的力可以克服层状材料中通常占主导地位的垂直范德华相互作用。这些知识应有助于指导改善混合二维异质结构中外延以及将平面内二维异质结构与各种复杂单层结构无缝缝合的方法。