Suppr超能文献

对单晶二维过渡金属二硫属化物在Au(111)衬底上外延生长机制的原子尺度洞察。

Atomistic Insight into the Epitaxial Growth Mechanism of Single-Crystal Two-Dimensional Transition-Metal Dichalcogenides on Au(111) Substrate.

作者信息

Ding Degong, Wang Shuang, Xia Yipu, Li Pai, He Daliang, Zhang Junqiu, Zhao Sunwen, Yu Guanghui, Zheng Yonghui, Cheng Yan, Xie Maohai, Ding Feng, Jin Chuanhong

机构信息

State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.

State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

出版信息

ACS Nano. 2022 Oct 25;16(10):17356-17364. doi: 10.1021/acsnano.2c08188. Epub 2022 Oct 6.

Abstract

A mechanistic understanding of interactions between atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDs) and their growth substrates is important for achieving the unidirectional alignment of nuclei and seamless stitching of 2D TMD domains and thus 2D wafers. In this work, we conduct a cross-sectional scanning transmission electron microscopy (STEM) study to investigate the atomic-scale nucleation and early stage growth behaviors of chemical vapor deposited monolayer (ML-) MoS and molecular beam epitaxy ML-MoSe on a Au(111) substrate. Statistical analysis reveals the majority of as-grown domains, i.e., ∼88% for MoS and 90% for MoSe, nucleate on surface terraces, with the rest (i.e., ∼12% for MoS and 10% for MoSe) on surface steps. Moreover, within the latter case, step-associated nucleation, ∼64% of them are terminated with a Mo-zigzag edge in connection with the Au surface steps, with the rest (∼36%) being S-zigzag edges. In conjunction with density functional theory calculations, the results confirm that van der Waals epitaxy, rather than the surface step guided epitaxy, plays deterministic roles for the realization of unidirectional ML-MoS (MoSe) domains on a Au(111) substrate. In contrast, surface steps, particularly their step height, are mainly responsible for the integrity and thickness of MoS/MoSe films. In detail, it is found that the lateral growth of monolayer thick MoS/MoSe domains only proceeds across mono-Au-atom high surface steps (∼2.4 Å), but fail for higher ones (bi-Au atom step and higher) during the growth. Our cross-sectional STEM study also confirms the existence of considerable compressive residual strain that reaches ∼3.0% for ML-MoS/MoSe domains on Au(111). The present study aims to understand the growth mechanism of 2D TMD wafers.

摘要

从原子尺度理解二维(2D)过渡金属二硫属化物(TMD)与其生长衬底之间的相互作用,对于实现二维TMD原子核的单向排列以及二维TMD畴的无缝拼接进而实现二维晶圆的制备至关重要。在这项工作中,我们进行了横截面扫描透射电子显微镜(STEM)研究,以探究化学气相沉积单层(ML-)MoS和分子束外延ML-MoSe在Au(111)衬底上的原子尺度成核和早期生长行为。统计分析表明,大多数生长的畴,即MoS的约88%和MoSe的90%,在表面平台上成核,其余的(即MoS的约12%和MoSe的10%)在表面台阶上成核。此外,在后一种情况下,与台阶相关的成核中,约64%以与Au表面台阶相连的Mo锯齿边缘终止,其余的(约36%)为S锯齿边缘。结合密度泛函理论计算,结果证实范德华外延而非表面台阶引导外延在Au(111)衬底上实现单向ML-MoS(MoSe)畴中起决定性作用。相反,表面台阶,特别是它们的台阶高度,主要决定了MoS/MoSe薄膜的完整性和厚度。具体而言,发现单层厚的MoS/MoSe畴的横向生长仅能跨越单Au原子高的表面台阶(约2.4 Å),而在生长过程中对于更高的台阶(双Au原子台阶及更高)则无法进行。我们的横截面STEM研究还证实了在Au(111)上的ML-MoS/MoSe畴存在相当大的压缩残余应变,达到约3.0%。本研究旨在理解二维TMD晶圆的生长机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验