Qin Yang, Miao Ling, Mansuer Mulati, Hu Chengmin, Lv Yaokang, Gan Lihua, Liu Mingxian
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
ACS Appl Mater Interfaces. 2022 Jul 13. doi: 10.1021/acsami.2c08342.
Commercial supercapacitors using available carbon products have long been criticized for the under-utilization of their prominent specific surface area (SSA). In terms of carbonaceous electrode optimization, excessive improvement in SSA observed in the gaseous atmosphere might have little effect on the final performance because cracked/inaccessible pore alleys considerably block the direct electrolyte ion transport in a practical electrochemical environment. Herein, mesopore-adjustable hierarchically porous carbon nanosheets are fabricated based on a micelle-size-mediated spatial confinement strategy. In this strategy, hydrophobic trimethylbenzene in different volumes of the solvent can mediate the interfacial assembly with a carbon precursor and porogen segment through π-π bonding and van der Waals interaction to yield micelles with good dispersity and the diameter varying from 119 to 30 nm. With an increasing solvent volume, the corresponding diffusion coefficient (3.1-14.3 m s) of as-obtained smaller micelles increases, which makes adjacent micelles gather rapidly and then grow along the radial direction of oligomer aggregates to eventually form mesopores on hierarchically porous carbon nanosheets (MNC150-4.5). Thanks to the pore-expansion effect of trimethylbenzene, the mesoporous volume can be adjusted from 28.8 to 40.0%. Mesopores on hierarchically porous carbon nanosheets endow MNC150-4.5 with an enhanced electrochemically active surface area of 819.5 m g, which gives rise to quick electrolyte accessibility and a correspondingly immediate capacitive response of 338 F g at 0.5 A g in a three-electrode system. Electrolyte transport through pathways within MNC150-4.5 ultimately enables the symmetric cell to deliver a high energy output of 50.4 Wh kg at 625 W kg in a 14 m LiOTF electrolyte and 95% capacitance retention after 100,000 cycles, which show its superior electrochemical performance over representative carbon-based supercapacitors with aqueous electrolytes in recent literature.
长期以来,使用现有碳材料的商用超级电容器因其突出的比表面积(SSA)未得到充分利用而备受诟病。在碳质电极优化方面,在气态气氛中观察到的比表面积的过度提高可能对最终性能影响不大,因为在实际的电化学环境中,破裂/无法进入的孔隙通道会严重阻碍电解质离子的直接传输。在此,基于胶束尺寸介导的空间限制策略制备了介孔可调的分级多孔碳纳米片。在该策略中,不同体积溶剂中的疏水性三甲苯可通过π-π键和范德华相互作用介导与碳前驱体和成孔剂片段的界面组装,从而产生具有良好分散性且直径在119至30nm之间变化的胶束。随着溶剂体积的增加,所获得的较小胶束的相应扩散系数(3.1 - 14.3 m s)增大,这使得相邻胶束迅速聚集,然后沿低聚物聚集体的径向生长,最终在分级多孔碳纳米片(MNC150 - 4.5)上形成介孔。得益于三甲苯的扩孔效应,介孔体积可从28.8%调节至40.0%。分级多孔碳纳米片上的介孔赋予MNC150 - 4.5高达819.5 m g的增强电化学活性表面积,这使得电解质能够快速到达,在三电极系统中,在0.5 A g下相应的即时电容响应为338 F g。电解质通过MNC150 - 4.5内部的通道传输,最终使对称电池在14 m LiOTF电解质中以625 W kg的功率输出50.4 Wh kg的高能量,并且在100,000次循环后电容保持率为95%,这表明其电化学性能优于近期文献中具有水性电解质的代表性碳基超级电容器。