Suppr超能文献

靶向保守的 Hsp70 结合位点的研究揭示了亚细胞定位与不同生物学活性之间的关系。

A campaign targeting a conserved Hsp70 binding site uncovers how subcellular localization is linked to distinct biological activities.

机构信息

Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.

Department of Biology, Stanford University, Stanford, CA 94305, USA; Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.

出版信息

Cell Chem Biol. 2022 Aug 18;29(8):1303-1316.e3. doi: 10.1016/j.chembiol.2022.06.006. Epub 2022 Jul 12.

Abstract

The potential of small molecules to localize within subcellular compartments is rarely explored. To probe this question, we measured the localization of Hsp70 inhibitors using fluorescence microscopy. We found that even closely related analogs had dramatically different distributions, with some residing predominantly in the mitochondria and others in the ER. CRISPRi screens supported this idea, showing that different compounds had distinct chemogenetic interactions with Hsp70s of the ER (HSPA5/BiP) and mitochondria (HSPA9/mortalin) and their co-chaperones. Moreover, localization seemed to determine function, even for molecules with conserved binding sites. Compounds with distinct partitioning have distinct anti-proliferative activity in breast cancer cells compared with anti-viral activity in cellular models of Dengue virus replication, likely because different sets of Hsp70s are required in these processes. These findings highlight the contributions of subcellular partitioning and chemogenetic interactions to small molecule activity, features that are rarely explored during medicinal chemistry campaigns.

摘要

小分子在亚细胞隔室中定位的潜力很少被探索。为了探究这个问题,我们使用荧光显微镜测量了 Hsp70 抑制剂的定位。我们发现,即使是密切相关的类似物也有明显不同的分布,有些主要位于线粒体,有些则位于内质网。CRISPRi 筛选支持了这一观点,表明不同的化合物与内质网(HSPA5/BiP 和 HSPA9/mortalin)和线粒体(HSPA9/mortalin)及其共伴侣的 Hsp70 具有不同的化学遗传学相互作用。此外,定位似乎决定了功能,即使对于具有保守结合位点的分子也是如此。与登革热病毒复制的细胞模型中的抗病毒活性相比,具有不同分配的化合物在乳腺癌细胞中具有不同的抗增殖活性,这可能是因为这些过程需要不同的 Hsp70 集合。这些发现强调了亚细胞分区和化学遗传学相互作用对小分子活性的贡献,这些特征在药物化学研究中很少被探索。

相似文献

1
A campaign targeting a conserved Hsp70 binding site uncovers how subcellular localization is linked to distinct biological activities.
Cell Chem Biol. 2022 Aug 18;29(8):1303-1316.e3. doi: 10.1016/j.chembiol.2022.06.006. Epub 2022 Jul 12.
3
The large Hsp70 Grp170 binds to unfolded protein substrates in vivo with a regulation distinct from conventional Hsp70s.
J Biol Chem. 2014 Jan 31;289(5):2899-907. doi: 10.1074/jbc.M113.507491. Epub 2013 Dec 10.
4
The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s.
Cell Stress Chaperones. 2000 Oct;5(4):276-90. doi: 10.1379/1466-1268(2000)005<0276:thagsp>2.0.co;2.
6
J domain co-chaperone specificity defines the role of BiP during protein translocation.
J Biol Chem. 2010 Jul 16;285(29):22484-94. doi: 10.1074/jbc.M110.102186. Epub 2010 Apr 29.
8
HOP3, a member of the HOP family in Arabidopsis, interacts with BiP and plays a major role in the ER stress response.
Plant Cell Environ. 2017 Aug;40(8):1341-1355. doi: 10.1111/pce.12927. Epub 2017 Mar 27.
9
The regulation of the thermal stability and affinity of the HSPA5 (Grp78/BiP) by clients and nucleotides is modulated by domains coupling.
Biochim Biophys Acta Proteins Proteom. 2024 Sep 1;1872(5):141034. doi: 10.1016/j.bbapap.2024.141034. Epub 2024 Jul 14.
10
Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones.
J Med Chem. 2021 Jun 10;64(11):7060-7082. doi: 10.1021/acs.jmedchem.0c02091. Epub 2021 May 19.

引用本文的文献

1
Emerging magic bullet: subcellular organelle-targeted cancer therapy.
Med Rev (2021). 2024 Sep 12;5(2):117-138. doi: 10.1515/mr-2024-0044. eCollection 2025 Apr.
3
J-domain proteins: From molecular mechanisms to diseases.
Cell Stress Chaperones. 2024 Feb;29(1):21-33. doi: 10.1016/j.cstres.2023.12.002. Epub 2023 Dec 23.
4
Editorial: The role of mortalin in biology and disease.
Front Cell Dev Biol. 2023 Apr 11;11:1196430. doi: 10.3389/fcell.2023.1196430. eCollection 2023.

本文引用的文献

1
Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones.
J Med Chem. 2021 Jun 10;64(11):7060-7082. doi: 10.1021/acs.jmedchem.0c02091. Epub 2021 May 19.
2
Liquid Biomolecular Condensates and Viral Lifecycles: Review and Perspectives.
Viruses. 2021 Feb 25;13(3):366. doi: 10.3390/v13030366.
3
Selective Inhibition of the Hsp90α Isoform.
Angew Chem Int Ed Engl. 2021 May 3;60(19):10547-10551. doi: 10.1002/anie.202015422. Epub 2021 Mar 26.
4
The Gene Ontology resource: enriching a GOld mine.
Nucleic Acids Res. 2021 Jan 8;49(D1):D325-D334. doi: 10.1093/nar/gkaa1113.
5
Partitioning of cancer therapeutics in nuclear condensates.
Science. 2020 Jun 19;368(6497):1386-1392. doi: 10.1126/science.aaz4427.
6
Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code.
J Biol Chem. 2020 Jul 31;295(31):10689-10708. doi: 10.1074/jbc.REV120.011666. Epub 2020 Jun 9.
7
Reflections and Outlook on Targeting HSP90, HSP70 and HSF1 in Cancer: A Personal Perspective.
Adv Exp Med Biol. 2020;1243:163-179. doi: 10.1007/978-3-030-40204-4_11.
8
Hsp70 and the Unfolded Protein Response as a Challenging Drug Target and an Inspiration for Probe Molecule Development.
ACS Med Chem Lett. 2020 Mar 12;11(3):232-236. doi: 10.1021/acsmedchemlett.9b00583.
9
Neutral analogs of the heat shock protein 70 (Hsp70) inhibitor, JG-98.
Bioorg Med Chem Lett. 2020 Mar 1;30(5):126954. doi: 10.1016/j.bmcl.2020.126954. Epub 2020 Jan 11.
10
Old and New Approaches to Target the Hsp90 Chaperone.
Curr Cancer Drug Targets. 2020;20(4):253-270. doi: 10.2174/1568009619666191202101330.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验