Suppr超能文献

在一个大型初级保健人群中主要药物不依从性:来自马尼托巴省的观察性研究。

Primary medication nonadherence in a large primary care population: Observational study from Manitoba.

机构信息

Associate Professor in the Department of Family Medicine in the Max Rady College of Medicine of the Rady Faculty of Health Sciences at the University of Manitoba in Winnipeg.

Research Facilitator in the Department of Family Medicine at the University of Manitoba.

出版信息

Can Fam Physician. 2022 Jul;68(7):520-527. doi: 10.46747/cfp.6807520.

Abstract

OBJECTIVE

To analyze primary medication nonadherence across several prescription indications and test the predictors of drug nonadherence in an adult primary care population.

DESIGN

Retrospective observational study using primary care provider prescriptions linked to pharmacy-based dispensing data from 2012 to 2014.

SETTING

Manitoba.

PARTICIPANTS

Patients in the Manitoba Primary Care Research Network.

MAIN OUTCOME MEASURES

Prevalence of primary medication nonadherence by drug class. Multivariable logistic regression models were used to test the associations of patient demographic and clinical or provider characteristics with primary medication nonadherence. The C statistic was used to assess the models' discriminative performance.

RESULTS

A total of 91,660 unique prescriptions were assessed from a cohort of more than 200,000 patients. Primary medication nonadherence ranged from 13.7% (antidepressants) to 30.3% (antihypertensives). In conditions that typically present symptomatically (eg, infections, anxiety) nonadherence ranged from 13.7% to 17.5%. The range was 21.2% to 30.0% for medications related to asymptomatic conditions or those typically detected by screening. The discriminative performance of the models based on patient demographic, clinical, or provider characteristics was weak.

CONCLUSION

Primary medication nonadherence is common, occurring more often in asymptomatic conditions. The poor predictability of the models suggests that caution is required when considering characteristic-based interventions or prediction tools to improve primary medication nonadherence.

摘要

目的

分析几种处方适应证下的主要药物不依从性,并检验成年初级保健人群中药物不依从的预测因素。

设计

使用 2012 年至 2014 年的初级保健提供者处方与基于药房的配药数据相链接的回顾性观察性研究。

地点

曼尼托巴省。

参与者

曼尼托巴初级保健研究网络的患者。

主要结局测量

按药物类别评估主要药物不依从的发生率。使用多变量逻辑回归模型检验患者人口统计学和临床或提供者特征与主要药物不依从的关联。使用 C 统计量评估模型的判别性能。

结果

从超过 200,000 名患者的队列中评估了 91,660 个独特的处方。主要药物不依从率从 13.7%(抗抑郁药)到 30.3%(抗高血压药)不等。在通常表现出症状的情况下(例如感染、焦虑),不依从率从 13.7%到 17.5%不等。与无症状情况或通常通过筛查检测到的药物相关的药物不依从率为 21.2%至 30.0%。基于患者人口统计学、临床或提供者特征的模型的判别性能较弱。

结论

主要药物不依从很常见,在无症状情况下更为常见。模型的可预测性差表明,在考虑基于特征的干预措施或预测工具来改善主要药物不依从时需要谨慎。

相似文献

本文引用的文献

2
Primary nonadherence to chronic disease medications: a meta-analysis.慢性病药物治疗的原发性不依从性:一项荟萃分析。
Patient Prefer Adherence. 2018 May 7;12:721-731. doi: 10.2147/PPA.S161151. eCollection 2018.
5
Adherence with epinephrine autoinjector prescriptions in primary care.基层医疗中肾上腺素自动注射器处方的依从性。
Allergy Asthma Clin Immunol. 2017 Nov 10;13:46. doi: 10.1186/s13223-017-0218-5. eCollection 2017.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验