Suppr超能文献

利用时间序列生命体征提高普通病房住院患者恶化检测率。

Improved inpatient deterioration detection in general wards by using time-series vital signs.

机构信息

Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, ROC.

Division of Medical Quality, En-Chu-Kong Hospital, New Taipei, Taiwan, ROC.

出版信息

Sci Rep. 2022 Jul 13;12(1):11901. doi: 10.1038/s41598-022-16195-2.

Abstract

Although in-hospital cardiac arrest is uncommon, it has a high mortality rate. Risk identification of at-risk patients is critical for post-cardiac arrest survival rates. Early warning scoring systems are generally used to identify hospitalized patients at risk of deterioration. However, these systems often require clinical data that are not always regularly measured. We developed a more accurate, machine learning-based model to predict clinical deterioration. The time series early warning score (TEWS) used only heart rate, systolic blood pressure, and respiratory data, which are regularly measured in general wards. We tested the performance of the TEWS in two tasks performed with data from the electronic medical records of 16,865 adult admissions and compared the results with those of other classifications. The TEWS detected more deteriorations with the same level of specificity as the different algorithms did when inputting vital signs data from 48 h before an event. Our framework improved in-hospital cardiac arrest prediction and demonstrated that previously obtained vital signs data can be used to identify at-risk patients in real-time. This model may be an alternative method for detecting patient deterioration.

摘要

尽管院内心搏骤停并不常见,但它的死亡率却很高。识别高危患者对于心搏骤停后存活率至关重要。预警评分系统通常用于识别有恶化风险的住院患者。然而,这些系统通常需要临床数据,而这些数据并不总是定期测量的。我们开发了一种更准确的、基于机器学习的模型来预测临床恶化。时间序列预警评分(TEWS)仅使用心率、收缩压和呼吸数据,这些数据在普通病房中定期测量。我们使用来自 16865 名成年患者电子病历的数据,在两个任务中测试了 TEWS 的性能,并将结果与其他分类方法进行了比较。TEWS 在检测到恶化方面比其他算法更有效,同时在输入事件发生前 48 小时的生命体征数据时具有相同的特异性。我们的框架提高了院内心搏骤停的预测能力,并证明了之前获得的生命体征数据可用于实时识别高危患者。该模型可能是检测患者恶化的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61d2/9279370/e3adb88ea0b5/41598_2022_16195_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验