Suppr超能文献

通过酶的多功能性方法预测人肠道微生物群中酚类化合物的降解途径。

Prediction of degradation pathways of phenolic compounds in the human gut microbiota through enzyme promiscuity methods.

机构信息

University of Navarra, Tecnun School of Engineering, Manuel de Lardizábal 13, 20018, San Sebastián, Spain.

Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.

出版信息

NPJ Syst Biol Appl. 2022 Jul 12;8(1):24. doi: 10.1038/s41540-022-00234-9.

Abstract

The relevance of phenolic compounds in the human diet has increased in recent years, particularly due to their role as natural antioxidants and chemopreventive agents in different diseases. In the human body, phenolic compounds are mainly metabolized by the gut microbiota; however, their metabolism is not well represented in public databases and existing reconstructions. In a previous work, using different sources of knowledge, bioinformatic and modelling tools, we developed AGREDA, an extended metabolic network more amenable to analyze the interaction of the human gut microbiota with diet. Despite the substantial improvement achieved by AGREDA, it was not sufficient to represent the diverse metabolic space of phenolic compounds. In this article, we make use of an enzyme promiscuity approach to complete further the metabolism of phenolic compounds in the human gut microbiota. In particular, we apply RetroPath RL, a previously developed approach based on Monte Carlo Tree Search strategy reinforcement learning, in order to predict the degradation pathways of compounds present in Phenol-Explorer, the largest database of phenolic compounds in the literature. Reactions predicted by RetroPath RL were integrated with AGREDA, leading to a more complete version of the human gut microbiota metabolic network. We assess the impact of our improvements in the metabolic processing of various foods, finding previously undetected connections with output microbial metabolites. By means of untargeted metabolomics data, we present in vitro experimental validation for output microbial metabolites released in the fermentation of lentils with feces of children representing different clinical conditions.

摘要

近年来,由于酚类化合物在不同疾病中作为天然抗氧化剂和化学预防剂的作用,其在人类饮食中的相关性有所增加。在人体中,酚类化合物主要通过肠道微生物群代谢;然而,它们的代谢在公共数据库和现有重建中没有得到很好的体现。在之前的一项工作中,我们使用不同的知识来源、生物信息学和建模工具开发了 AGREDA,这是一个扩展的代谢网络,更适合分析人类肠道微生物群与饮食的相互作用。尽管 AGREDA 取得了实质性的改进,但它不足以代表酚类化合物多样化的代谢空间。在本文中,我们利用酶多功能性方法进一步完成人类肠道微生物群中酚类化合物的代谢。具体来说,我们应用 RetroPath RL,这是一种基于蒙特卡罗树搜索策略强化学习的先前开发的方法,以预测文献中最大的酚类化合物数据库 Phenol-Explorer 中存在的化合物的降解途径。RetroPath RL 预测的反应与 AGREDA 相结合,导致人类肠道微生物群代谢网络的更完整版本。我们评估了我们在各种食物代谢处理方面的改进的影响,发现了以前未检测到的与输出微生物代谢物的连接。通过非靶向代谢组学数据,我们提供了体外实验验证,证明了不同临床条件下儿童粪便发酵小扁豆释放的输出微生物代谢物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a46/9279433/d98edda1f6d3/41540_2022_234_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验