文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

由 CST 构建的端粒复制子的重建。

Reconstitution of a telomeric replicon organized by CST.

机构信息

Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.

BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.

出版信息

Nature. 2022 Aug;608(7924):819-825. doi: 10.1038/s41586-022-04930-8. Epub 2022 Jul 13.


DOI:10.1038/s41586-022-04930-8
PMID:35831508
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9402439/
Abstract

Telomeres, the natural ends of linear chromosomes, comprise repeat-sequence DNA and associated proteins. Replication of telomeres allows continued proliferation of human stem cells and immortality of cancer cells. This replication requires telomerase extension of the single-stranded DNA (ssDNA) of the telomeric G-strand ((TTAGGG)); the synthesis of the complementary C-strand ((CCCTAA)) is much less well characterized. The CST (CTC1-STN1-TEN1) protein complex, a DNA polymerase α-primase accessory factor, is known to be required for telomere replication in vivo, and the molecular analysis presented here reveals key features of its mechanism. We find that human CST uses its ssDNA-binding activity to specify the origins for telomeric C-strand synthesis by bound Polα-primase. CST-organized DNA polymerization can copy a telomeric DNA template that folds into G-quadruplex structures, but the challenges presented by this template probably contribute to telomere replication problems observed in vivo. Combining telomerase, a short telomeric ssDNA primer and CST-Polα-primase gives complete telomeric DNA replication, resulting in the same sort of ssDNA 3' overhang found naturally on human telomeres. We conclude that the CST complex not only terminates telomerase extension and recruits Polα-primase to telomeric ssDNA but also orchestrates C-strand synthesis. Because replication of the telomere has features distinct from replication of the rest of the genome, targeting telomere-replication components including CST holds promise for cancer therapeutics.

摘要

端粒是线性染色体的自然末端,由重复序列 DNA 和相关蛋白组成。端粒的复制允许人类干细胞的持续增殖和癌细胞的永生。这种复制需要端粒酶延伸端粒的单链 DNA(ssDNA)的 G 链((TTAGGG));端粒 C 链((CCCTAA))的合成特征描述较少。CST(CTC1-STN1-TEN1)蛋白复合物是一种 DNA 聚合酶α-引发酶辅助因子,已知在体内端粒复制中是必需的,这里提出的分子分析揭示了其机制的关键特征。我们发现人类 CST 利用其 ssDNA 结合活性来指定结合 Polα-引发酶的端粒 C 链合成的起始点。CST 组织的 DNA 聚合可以复制折叠成 G-四链体结构的端粒 DNA 模板,但这种模板带来的挑战可能导致体内观察到的端粒复制问题。端粒酶、短的端粒 ssDNA 引物和 CST-Polα-引发酶的组合可以完成端粒 DNA 的复制,从而产生在人端粒上自然存在的相同类型的 ssDNA 3'突出端。我们得出的结论是,CST 复合物不仅终止端粒酶延伸并募集 Polα-引发酶到端粒 ssDNA,而且还协调 C 链合成。由于端粒的复制具有与基因组其余部分的复制不同的特征,包括 CST 在内的端粒复制成分的靶向治疗具有癌症治疗的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/e18a1078ced7/41586_2022_4930_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/d484dede8812/41586_2022_4930_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/a16f50a0b2c5/41586_2022_4930_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/1e72e22740ea/41586_2022_4930_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/5d6e92c08116/41586_2022_4930_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/07790c102038/41586_2022_4930_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/17612ce0303d/41586_2022_4930_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/4196c22f1218/41586_2022_4930_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/302c858f48b1/41586_2022_4930_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/907ee1c3060c/41586_2022_4930_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/a3fdeae5962b/41586_2022_4930_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/9ce7ba6a8ea6/41586_2022_4930_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/965a417036d1/41586_2022_4930_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/5dfffb9c73a5/41586_2022_4930_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/e18a1078ced7/41586_2022_4930_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/d484dede8812/41586_2022_4930_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/a16f50a0b2c5/41586_2022_4930_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/1e72e22740ea/41586_2022_4930_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/5d6e92c08116/41586_2022_4930_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/07790c102038/41586_2022_4930_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/17612ce0303d/41586_2022_4930_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/4196c22f1218/41586_2022_4930_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/302c858f48b1/41586_2022_4930_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/907ee1c3060c/41586_2022_4930_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/a3fdeae5962b/41586_2022_4930_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/9ce7ba6a8ea6/41586_2022_4930_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/965a417036d1/41586_2022_4930_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/5dfffb9c73a5/41586_2022_4930_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c51/9402439/e18a1078ced7/41586_2022_4930_Fig14_ESM.jpg

相似文献

[1]
Reconstitution of a telomeric replicon organized by CST.

Nature. 2022-8

[2]
POT1 recruits and regulates CST-Polα/primase at human telomeres.

Cell. 2024-7-11

[3]
CST-polymerase α-primase solves a second telomere end-replication problem.

Nature. 2024-3

[4]
Models for human telomere C-strand fill-in by CST-Polα-primase.

Trends Biochem Sci. 2023-10

[5]
CST-Polα/Primase: the second telomere maintenance machine.

Genes Dev. 2023-7-1

[6]
POT1 recruits and regulates CST-Polα/Primase at human telomeres.

bioRxiv. 2023-10-26

[7]
Telomere C-Strand Fill-In Machinery: New Insights into the Human CST-DNA Polymerase Alpha-Primase Structures and Functions.

Subcell Biochem. 2024

[8]
Structure of Tetrahymena telomerase-bound CST with polymerase α-primase.

Nature. 2022-8

[9]
Structures of the human CST-Polα-primase complex bound to telomere templates.

Nature. 2022-8

[10]
CST does not evict elongating telomerase but prevents initiation by ssDNA binding.

Nucleic Acids Res. 2021-11-18

引用本文的文献

[1]
DNA polymerase α/primase extraction from chromatin by VCP/p97 restricts ATR activation during unperturbed DNA replication.

Nat Commun. 2025-7-1

[2]
The yeast CST and Polα/primase complexes act in concert to ensure proper telomere maintenance and protection.

Nucleic Acids Res. 2025-4-10

[3]
Rapid dynamics allow the low-abundance RTEL1 helicase to promote telomere replication.

Nucleic Acids Res. 2025-2-27

[4]
Inherited Telomere Biology Disorders: Pathophysiology, Clinical Presentation, Diagnostics, and Treatment.

Transfus Med Hemother. 2024-7-30

[5]
The evolving genetic landscape of telomere biology disorder dyskeratosis congenita.

EMBO Mol Med. 2024-10

[6]
Ethnic-specific genetic susceptibility loci for endometriosis in Taiwanese-Han population: a genome-wide association study.

J Hum Genet. 2024-11

[7]
Telomere C-Strand Fill-In Machinery: New Insights into the Human CST-DNA Polymerase Alpha-Primase Structures and Functions.

Subcell Biochem. 2024

[8]
Small molecule telomerase inhibitors are also potent inhibitors of telomeric C-strand synthesis.

RNA. 2024-8-16

[9]
Human CST Stimulates Base Excision Repair to Prevent the Accumulation of Oxidative DNA Damage.

J Mol Biol. 2024-8-15

[10]
POT1 recruits and regulates CST-Polα/primase at human telomeres.

Cell. 2024-7-11

本文引用的文献

[1]
CST does not evict elongating telomerase but prevents initiation by ssDNA binding.

Nucleic Acids Res. 2021-11-18

[2]
Integrated evaluation of telomerase activation and telomere maintenance across cancer cell lines.

Elife. 2021-9-6

[3]
Telomere Replication: Solving Multiple End Replication Problems.

Front Cell Dev Biol. 2021-4-1

[4]
Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization.

Nat Rev Mol Cell Biol. 2021-4

[5]
The structure of human CST reveals a decameric assembly bound to telomeric DNA.

Science. 2020-6-5

[6]
The N Terminus of the OB Domain of Telomere Protein TPP1 Is Critical for Telomerase Action.

Cell Rep. 2018-1-30

[7]
Dynamic DNA binding, junction recognition and G4 melting activity underlie the telomeric and genome-wide roles of human CST.

Nucleic Acids Res. 2017-12-1

[8]
STN1-POLA2 interaction provides a basis for primase-pol α stimulation by human STN1.

Nucleic Acids Res. 2017-9-19

[9]
Human CST Prefers G-Rich but Not Necessarily Telomeric Sequences.

Biochemistry. 2017-8-15

[10]
Human CST promotes telomere duplex replication and general replication restart after fork stalling.

EMBO J. 2012-8-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索