Suppr超能文献

塑造人类端粒:从端粒保护蛋白和 CST 复合物到端粒染色质结构。

Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization.

机构信息

Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.

Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.

出版信息

Nat Rev Mol Cell Biol. 2021 Apr;22(4):283-298. doi: 10.1038/s41580-021-00328-y. Epub 2021 Feb 9.

Abstract

The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.

摘要

哺乳动物端粒长度的调控对于染色体末端的封闭至关重要,从而维持基因组的稳定性和细胞寿命。这个过程需要端粒蛋白复合物和核糖核蛋白端粒酶之间的协调,端粒酶可以延伸端粒 DNA。端粒蛋白调节端粒结构,将端粒酶招募到可及的端粒上,并协调新合成的端粒单链 DNA 尾巴转化为双链 DNA。端粒维持功能障碍会导致端粒缩短,从而导致包括骨髓衰竭、早衰和癌症在内的人类疾病。最近的研究为端粒酶相关相互作用(“端粒复制体”)提供了新的见解,并揭示了未来端粒结构生物学努力的新挑战,这是由于端粒结构的动态性质和端粒形成的大量结构。在这篇综述中,我们讨论了最近确定的庇护素和 CTC1-STN1-TEN1(CST)复合物的结构,它们如何参与端粒复制和染色体末端封闭的调控,以及它们编码基因中的致病突变如何影响特定功能。该领域的主要悬而未决的问题包括所有端粒成分如何相互组装,以及如何实现不同端粒结构之间的转换。

相似文献

2
Structural biology of telomeres and telomerase.端粒和端粒酶的结构生物学。
Cell Mol Life Sci. 2020 Jan;77(1):61-79. doi: 10.1007/s00018-019-03369-x. Epub 2019 Nov 14.
4
POT1 recruits and regulates CST-Polα/primase at human telomeres.POT1 在人类端粒处招募并调节 CST-Polα/引发酶。
Cell. 2024 Jul 11;187(14):3638-3651.e18. doi: 10.1016/j.cell.2024.05.002. Epub 2024 Jun 4.
7
CST-Polα/Primase: the second telomere maintenance machine.CST-Polα/Primase:第二 telomere 维持机器。
Genes Dev. 2023 Jul 1;37(13-14):555-569. doi: 10.1101/gad.350479.123. Epub 2023 Jul 26.
9
Evolution of CST function in telomere maintenance.CST 在端粒维持中的功能演变。
Cell Cycle. 2010 Aug 15;9(16):3157-65. doi: 10.4161/cc.9.16.12547. Epub 2010 Aug 26.

引用本文的文献

1
How to measure and model cardiovascular aging.如何测量和模拟心血管衰老。
Cardiovasc Res. 2025 Aug 28;121(10):1489-1508. doi: 10.1093/cvr/cvaf138.

本文引用的文献

3
Characterization of t-loop formation by TRF2.端粒结合因子 2(TRF2)形成 T 环的特性。
Nucleus. 2020 Dec;11(1):164-177. doi: 10.1080/19491034.2020.1783782.
8
Regulation of human telomerase in homeostasis and disease.人类端粒酶在体内平衡和疾病中的调控。
Nat Rev Mol Cell Biol. 2020 Jul;21(7):384-397. doi: 10.1038/s41580-020-0234-z. Epub 2020 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验