Suppr超能文献

端粒复制:解决多个末端复制问题。

Telomere Replication: Solving Multiple End Replication Problems.

作者信息

Bonnell Erin, Pasquier Emeline, Wellinger Raymund J

机构信息

Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, QC, Canada.

出版信息

Front Cell Dev Biol. 2021 Apr 1;9:668171. doi: 10.3389/fcell.2021.668171. eCollection 2021.

Abstract

Eukaryotic genomes are highly complex and divided into linear chromosomes that require end protection from unwarranted fusions, recombination, and degradation in order to maintain genomic stability. This is accomplished through the conserved specialized nucleoprotein structure of telomeres. Due to the repetitive nature of telomeric DNA, and the unusual terminal structure, namely a protruding single stranded 3' DNA end, completing telomeric DNA replication in a timely and efficient manner is a challenge. For example, the end replication problem causes a progressive shortening of telomeric DNA at each round of DNA replication, thus telomeres eventually lose their protective capacity. This phenomenon is counteracted by the recruitment and the activation at telomeres of the specialized reverse transcriptase telomerase. Despite the importance of telomerase in providing a mechanism for complete replication of telomeric ends, the majority of telomere replication is in fact carried out by the conventional DNA replication machinery. There is significant evidence demonstrating that progression of replication forks is hampered at chromosomal ends due to telomeric sequences prone to form secondary structures, tightly DNA-bound proteins, and the heterochromatic nature of telomeres. The telomeric loop (t-loop) formed by invasion of the 3'-end into telomeric duplex sequences may also impede the passage of replication fork. Replication fork stalling can lead to fork collapse and DNA breaks, a major cause of genomic instability triggered notably by unwanted repair events. Moreover, at chromosomal ends, unreplicated DNA distal to a stalled fork cannot be rescued by a fork coming from the opposite direction. This highlights the importance of the multiple mechanisms involved in overcoming fork progression obstacles at telomeres. Consequently, numerous factors participate in efficient telomeric DNA duplication by preventing replication fork stalling or promoting the restart of a stalled replication fork at telomeres. In this review, we will discuss difficulties associated with the passage of the replication fork through telomeres in both fission and budding yeasts as well as mammals, highlighting conserved mechanisms implicated in maintaining telomere integrity during replication, thus preserving a stable genome.

摘要

真核生物基因组高度复杂,被分成线性染色体,为维持基因组稳定性,这些染色体需要对末端进行保护,防止无端融合、重组和降解。这是通过端粒保守的特殊核蛋白结构来实现的。由于端粒DNA的重复性质以及不寻常的末端结构,即突出的单链3' DNA末端,及时、高效地完成端粒DNA复制是一项挑战。例如,末端复制问题导致每一轮DNA复制后端粒DNA逐渐缩短,因此端粒最终会失去其保护能力。这种现象通过在端粒处招募和激活特殊的逆转录酶端粒酶来抵消。尽管端粒酶在提供端粒末端完整复制机制方面很重要,但实际上大多数端粒复制是由传统的DNA复制机器完成的。有大量证据表明,由于端粒序列易于形成二级结构、紧密结合DNA的蛋白质以及端粒的异染色质性质,复制叉在染色体末端的进展受到阻碍。由3'末端侵入端粒双链序列形成的端粒环(t-loop)也可能阻碍复制叉的通过。复制叉停滞会导致叉塌陷和DNA断裂,这是基因组不稳定的主要原因,尤其是由不必要的修复事件引发的。此外 在染色体末端,停滞叉远端未复制的DNA无法被来自相反方向的叉拯救。这突出了克服端粒处复制叉进展障碍所涉及的多种机制的重要性。因此,许多因素通过防止复制叉停滞或促进端粒处停滞复制叉的重新启动来参与有效的端粒DNA复制。在这篇综述中,我们将讨论裂殖酵母、芽殖酵母以及哺乳动物中复制叉通过端粒时遇到的困难,强调在复制过程中维持端粒完整性从而保持基因组稳定所涉及的保守机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b496/8047117/322a9e31b75e/fcell-09-668171-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验