文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用基因表达谱对术后感染和脓毒症进行症状前诊断。

Presymptomatic diagnosis of postoperative infection and sepsis using gene expression signatures.

机构信息

Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, UK.

Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK.

出版信息

Intensive Care Med. 2022 Sep;48(9):1133-1143. doi: 10.1007/s00134-022-06769-z. Epub 2022 Jul 13.


DOI:10.1007/s00134-022-06769-z
PMID:35831640
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9281215/
Abstract

PURPOSE: Early accurate diagnosis of infection ± organ dysfunction (sepsis) remains a major challenge in clinical practice. Utilizing effective biomarkers to identify infection and impending organ dysfunction before the onset of clinical signs and symptoms would enable earlier investigation and intervention. To our knowledge, no prior study has specifically examined the possibility of pre-symptomatic detection of sepsis. METHODS: Blood samples and clinical/laboratory data were collected daily from 4385 patients undergoing elective surgery. An adjudication panel identified 154 patients with definite postoperative infection, of whom 98 developed sepsis. Transcriptomic profiling and subsequent RT-qPCR were undertaken on sequential blood samples taken postoperatively from these patients in the three days prior to the onset of symptoms. Comparison was made against postoperative day-, age-, sex- and procedure- matched patients who had an uncomplicated recovery (n =151) or postoperative inflammation without infection (n =148). RESULTS: Specific gene signatures optimized to predict infection or sepsis in the three days prior to clinical presentation were identified in initial discovery cohorts. Subsequent classification using machine learning with cross-validation with separate patient cohorts and their matched controls gave high Area Under the Receiver Operator Curve (AUC) values. These allowed discrimination of infection from uncomplicated recovery (AUC 0.871), infectious from non-infectious systemic inflammation (0.897), sepsis from other postoperative presentations (0.843), and sepsis from uncomplicated infection (0.703). CONCLUSION: Host biomarker signatures may be able to identify postoperative infection or sepsis up to three days in advance of clinical recognition. If validated in future studies, these signatures offer potential diagnostic utility for postoperative management of deteriorating or high-risk surgical patients and, potentially, other patient populations.

摘要

目的:早期准确诊断感染±器官功能障碍(脓毒症)仍然是临床实践中的主要挑战。利用有效的生物标志物在出现临床症状和体征之前识别感染和即将发生的器官功能障碍,将能够更早地进行检查和干预。据我们所知,以前没有研究专门探讨过在症状出现前检测脓毒症的可能性。

方法:从 4385 名接受择期手术的患者中每天采集血液样本和临床/实验室数据。一个裁决小组确定了 154 名术后明确感染的患者,其中 98 名患者发生了脓毒症。对这些患者在出现症状前三天内术后采集的连续血样进行转录组谱分析和随后的 RT-qPCR。与术后无并发症恢复的患者(n=151)或术后无感染的炎症患者(n=148)进行比较,这些患者在年龄、性别和手术程序上相匹配。

结果:在最初的发现队列中,针对症状出现前三天预测感染或脓毒症的特定基因特征进行了优化。使用机器学习进行后续分类,并使用来自不同患者队列及其匹配对照的交叉验证进行分类,获得了较高的接收器操作特征曲线(AUC)值。这些方法可以区分感染与无并发症的恢复(AUC 0.871)、感染与非感染性全身炎症(0.897)、脓毒症与其他术后表现(0.843)、以及脓毒症与无并发症的感染(0.703)。

结论:宿主生物标志物特征可能能够在临床识别之前提前三天识别术后感染或脓毒症。如果在未来的研究中得到验证,这些特征为恶化或高危手术患者的术后管理以及潜在的其他患者群体提供了潜在的诊断效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f820/9281215/421d8ccafd8f/134_2022_6769_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f820/9281215/2a47f6b9e9ec/134_2022_6769_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f820/9281215/e4ae6480694b/134_2022_6769_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f820/9281215/421d8ccafd8f/134_2022_6769_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f820/9281215/2a47f6b9e9ec/134_2022_6769_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f820/9281215/e4ae6480694b/134_2022_6769_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f820/9281215/421d8ccafd8f/134_2022_6769_Fig3_HTML.jpg

相似文献

[1]
Presymptomatic diagnosis of postoperative infection and sepsis using gene expression signatures.

Intensive Care Med. 2022-9

[2]
Host gene expression signatures to identify infection type and organ dysfunction in children evaluated for sepsis: a multicentre cohort study.

Lancet Child Adolesc Health. 2024-5

[3]
Risk assessment with gene expression markers in sepsis development.

Cell Rep Med. 2024-9-17

[4]
A Molecular Host Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflammation in Critically Ill Patients: Discovery and Validation in Independent Cohorts.

PLoS Med. 2015-12-8

[5]
Predicting sepsis severity at first clinical presentation: The role of endotypes and mechanistic signatures.

EBioMedicine. 2022-1

[6]
Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis.

Crit Care. 2011-6-20

[7]
Sepsis Care Pathway 2019.

Qatar Med J. 2019-11-7

[8]
A pilot study of a novel molecular host response assay to diagnose infection in patients after high-risk gastro-intestinal surgery.

J Crit Care. 2019-7-30

[9]
Prospectively validated predictions of shock and organ failure in individual septic surgical patients: the Systemic Mediator Associated Response Test.

Crit Care. 2000

[10]
Time course and relationship between plasma selenium concentrations, systemic inflammatory response, sepsis, and multiorgan failure.

Br J Anaesth. 2007-6

引用本文的文献

[1]
29-mRNA host response signatures for classification of bacterial infection, viral infection and disease progression in COVID-19 pneumonia: a post hoc analysis of the SAVE-MORE randomized clinical trial.

Intensive Care Med Exp. 2025-6-30

[2]
Multi-Omics and -Organ Insights into Energy Metabolic Adaptations in Early Sepsis Onset.

Adv Sci (Weinh). 2025-8

[3]
Identification of Hub Genes and Key Pathways Associated with Sepsis Progression Using Weighted Gene Co-Expression Network Analysis and Machine Learning.

Int J Mol Sci. 2025-5-7

[4]
Predicting Nonsense-mediated mRNA Decay from Splicing Events in Sepsis using RNA-Sequencing Data.

medRxiv. 2025-4-22

[5]
Large Language Model-Driven Knowledge Graph Construction in Sepsis Care Using Multicenter Clinical Databases: Development and Usability Study.

J Med Internet Res. 2025-3-27

[6]
Identification and validation of autophagy-related genes in sepsis based on bioinformatics studies.

Virol J. 2025-3-20

[7]
Standardized operating room nursing care is effective in preventing the occurrence of surgical wound infections.

Am J Transl Res. 2025-2-15

[8]
The Diagnostic Utility of Host RNA Biosignatures in Adult Patients With Sepsis: A Systematic Review and Meta-Analysis.

Crit Care Explor. 2025-1-31

[9]
The blood transcriptional response in patients developing intensive care unit-acquired pneumonia.

Eur Respir J. 2025-4-24

[10]
Pathogen class-specific transcriptional responses derived from PBMCs accurately discriminate between fungal, bacterial, and viral infections.

PLoS One. 2024-12-12

本文引用的文献

[1]
An Update on Sepsis Biomarkers.

Infect Chemother. 2020-3

[2]
Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study.

Lancet. 2020-1-18

[3]
Biomarkers of Infection and Sepsis.

Crit Care Clin. 2019-10-21

[4]
Clinical trial design for unmet clinical needs: a spotlight on sepsis.

Expert Rev Clin Pharmacol. 2019-7-22

[5]
Validation of a Host Response Assay, SeptiCyte LAB, for Discriminating Sepsis from Systemic Inflammatory Response Syndrome in the ICU.

Am J Respir Crit Care Med. 2018-10-1

[6]
The intensive care medicine research agenda on septic shock.

Intensive Care Med. 2017-5-12

[7]
Shared and Distinct Aspects of the Sepsis Transcriptomic Response to Fecal Peritonitis and Pneumonia.

Am J Respir Crit Care Med. 2017-8-1

[8]
Diagnosing sepsis is subjective and highly variable: a survey of intensivists using case vignettes.

Crit Care. 2016-4-6

[9]
The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

JAMA. 2016-2-23

[10]
Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study.

Crit Care. 2015-9-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索