Suppr超能文献

基于人工智能辅助图像分割的旅行路线识别与调度系统设计。

Design of Travel Route Identification and Scheduling System Based on Artificial Intelligence-Aided Image Segmentation.

机构信息

Physical Education College of Zhengzhou University, Zhengzhou 450044, China.

出版信息

Comput Intell Neurosci. 2022 Jul 4;2022:1458408. doi: 10.1155/2022/1458408. eCollection 2022.

Abstract

This study designs a travel recognition and scheduling system using artificial intelligence and image segmentation techniques. To address the problem of low division quality of current point division algorithms, this study proposes a streaming graph division model based on a sliding window (GraphWin), which dynamically adjusts the amount of information (vertex degree information and adjacency information) referenced at each division according to the current division quality and division time by introducing a sliding window mechanism, to achieve the highest possible division while allowing loss of certain division efficiency. The goal is to improve the division quality as much as possible while allowing a certain loss of division efficiency. To meet the user's need to travel through multiple destinations with the shortest route, this thesis proposes a deep reinforcement learning actor-critic (AC)-based multiobjective point path planning algorithm. The algorithm builds a strategy network and an evaluation network based on actor-critic's multiobjective point path planning, updates the strategy network and evaluation network parameters using AC optimization training, reduces the reliance of the algorithm model on a large amount of high-quality label data, and speeds up the convergence speed of the deep reinforcement learning algorithm by pretraining, finally completing the multiobjective point access sequential path planning task. Finally, the personalized travel recommendation system is designed and implemented, and the system performance analysis is conducted to clarify the system requirements in terms of functional and nonfunctional aspects: the system architecture, system functional modules, and database tables are designed to conduct use case testing of the main functional modules of the system, and the usability of the attraction recommendation algorithm is verified through the concrete implementation of the functional modules such as attraction recommendation in the system.

摘要

本研究设计了一个使用人工智能和图像分割技术的旅行识别和调度系统。针对当前点分割算法分割质量低的问题,本研究提出了一种基于滑动窗口(GraphWin)的流图分割模型,通过引入滑动窗口机制,根据当前分割质量和分割时间动态调整每次分割所参考的信息量(顶点度信息和邻接信息),在尽可能提高分割质量的同时,允许一定的分割效率损失。目标是在允许一定的分割效率损失的同时,尽可能提高分割质量。为了满足用户通过最短路径访问多个目的地的需求,本文提出了一种基于深度强化学习的 actor-critic(AC)多目标点路径规划算法。该算法基于 actor-critic 的多目标点路径规划构建策略网络和评估网络,使用 AC 优化训练更新策略网络和评估网络参数,减少算法模型对大量高质量标签数据的依赖,通过预训练加快深度强化学习算法的收敛速度,最终完成多目标点访问顺序路径规划任务。最后,设计并实现了个性化旅行推荐系统,并对系统性能进行了分析,以明确系统在功能和非功能方面的需求:设计了系统架构、系统功能模块和数据库表,对系统主要功能模块进行用例测试,通过系统中景点推荐等功能模块的具体实现验证景点推荐算法的可用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81d1/9273346/65ea767b0860/CIN2022-1458408.001.jpg

相似文献

3
Stochastic Integrated Actor-Critic for Deep Reinforcement Learning.用于深度强化学习的随机集成演员-评论家算法
IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6654-6666. doi: 10.1109/TNNLS.2022.3212273. Epub 2024 May 2.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验