Yang Min, Huang Weiyi, Tu Wenting, Qu Qiang, Shen Ying, Lei Kai
IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):49-62. doi: 10.1109/TNNLS.2020.2975035. Epub 2021 Jan 4.
Open-domain dialog generation, which is a crucial component of artificial intelligence, is an essential and challenging problem. In this article, we present a personalized dialog system, which leverages the advantages of multitask learning and reinforcement learning for personalized dialogue generation (MRPDG). Specifically, MRPDG consists of two subtasks: 1) an author profiling module that recognizes user characteristics from the input sentence (auxiliary task) and 2) a personalized dialog generation system that generates informative, grammatical, and coherent responses with reinforcement learning algorithms (primary task). Three kinds of rewards are proposed to generate high-quality conversations. We investigate the effectiveness of three widely used reinforcement learning methods [i.e., Q-learning, policy gradient, and actor-critic (AC) algorithm] in a personalized dialog generation system and demonstrate that the AC algorithm achieves the best results on the underlying framework. Comprehensive experiments are conducted to evaluate the performance of the proposed model on two real-life data sets. Experimental results illustrate that MRPDG is able to produce high-quality personalized dialogs for users with different characteristics. Quantitatively, the proposed model can achieve better performance than the compared methods across different evaluation metrics, such as the human evaluation, BiLingual Evaluation Understudy (BLEU), and perplexity.
开放域对话生成是人工智能的一个关键组成部分,是一个重要且具有挑战性的问题。在本文中,我们提出了一个个性化对话系统,该系统利用多任务学习和强化学习的优势进行个性化对话生成(MRPDG)。具体而言,MRPDG由两个子任务组成:1)一个作者剖析模块,用于从输入句子中识别用户特征(辅助任务);2)一个个性化对话生成系统,使用强化学习算法生成信息丰富、语法正确且连贯的回复(主要任务)。提出了三种奖励来生成高质量对话。我们研究了三种广泛使用的强化学习方法[即Q学习、策略梯度和演员评论家(AC)算法]在个性化对话生成系统中的有效性,并证明AC算法在基础框架上取得了最佳结果。进行了全面的实验以评估所提出模型在两个真实数据集上的性能。实验结果表明,MRPDG能够为具有不同特征的用户生成高质量的个性化对话。定量地说,所提出的模型在不同的评估指标上,如人工评估、双语评估替换指标(BLEU)和困惑度,都能比比较方法取得更好的性能。