Suppr超能文献

非小细胞肺癌中HDAC11蛋白表达的临床病理特征及预后意义:一项回顾性研究

Clinicopathological characteristics and prognostic significance of HDAC11 protein expression in non-small cell lung cancer: a retrospective study.

作者信息

Lu Di, Ma Zhiqiang, Huang Di, Zhang Jundong, Li Jinfeng, Zhi Peng, Zhang Lizhong, Feng Yingtong, Ge Xiangwei, Zhai Jinzhao, Jiang Menglong, Zhou Xin, Simone Charles B, Neal Joel W, Patel Shruti Rajesh, Yan Xiaolong, Hu Yi, Wang Jinliang

机构信息

Medical School of Chinese PLA, Beijing, China.

Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China.

出版信息

Transl Lung Cancer Res. 2022 Jun;11(6):1119-1131. doi: 10.21037/tlcr-22-403.

Abstract

BACKGROUND

Although the prognosis of non-small cell lung cancer (NSCLC) can be assessed based on pathological type, disease stage and inflammatory indicators, the prognostic scoring model of NSCLC still needs to improve. is associated with poor prognosis of partial tumors, but its prognostic relationship with NSCLC is poorly understood. In this study, the role of in NSCLC was studied to evaluate relationship with disease prognosis and potential therapeutic target.

METHODS

The clinicopathological and paracancerous tissues of patients with NSCLC primarily diagnosed in Tangdu Hospital from 2009 to 2013 were collected. Follow-up of patients were made every three months and the last follow-up period was December 2018. The expression of was assessed by immunohistochemistry (IHC). Then, weighted gene co-expression network analysis (WGCNA) was used to analyze the relationship between expression and the prognosis of lung adenocarcinoma (LUAD) patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Kaplan-Meier plotter database was used to verify the connection between hub genes and tumor stage and prognosis. We accessed the relationship between expression and clinicopathological features, and impact on the prognosis.

RESULTS

The study assessed 326 patients with NSCLC. Compared with adjacent tissues, expression was upregulated (HR =1.503, 95% CI: 1.172 to 1.927, P=0.001). Kaplan-Meier survival analyses showed that expression was closely related to OS of NSCLC patients (P=0.0011). Univariate and multivariate analyses showed that the independent risk factors of OS were clinical stage, expression, and differentiation (all P≤0.001). was significantly associated with prognosis in LUAD. A total of 1,174 differential genes and WGCNA were obtained to construct a co-expression network in LUAD. The GO and KEGG pathway enrichment analyses showed the relevance with staphylococcus aureus infection, NOD-like receptor signaling pathway, and others. The results of LUAD survival analysis showed that -related genes and were significantly associated with LUAD prognosis.

CONCLUSIONS

The high expression of is related to the poor prognosis of LUAD, and it is expected to become a therapeutic target and prognostic evaluation therapy for LUAD in the future. However, the relevant results need to be further studied and verified.

摘要

背景

尽管非小细胞肺癌(NSCLC)的预后可根据病理类型、疾病分期和炎症指标进行评估,但NSCLC的预后评分模型仍需改进。 与部分肿瘤的预后不良相关,但其与NSCLC的预后关系尚不清楚。在本研究中,研究了 在NSCLC中的作用,以评估其与疾病预后的关系及潜在治疗靶点。

方法

收集2009年至2013年在唐都医院初诊的NSCLC患者的临床病理组织和癌旁组织。每三个月对患者进行随访,最后一次随访时间为2018年12月。通过免疫组织化学(IHC)评估 的表达。然后,使用加权基因共表达网络分析(WGCNA)分析 表达与肺腺癌(LUAD)患者预后的关系。进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路富集分析。使用Kaplan-Meier plotter数据库验证核心基因与肿瘤分期和预后之间的联系。我们分析了 表达与临床病理特征之间的关系及其对预后的影响。

结果

该研究评估了326例NSCLC患者。与相邻组织相比, 表达上调(HR =1.503,95%CI:1.172至1.927,P=0.001)。Kaplan-Meier生存分析表明, 表达与NSCLC患者的总生存期密切相关(P=0.0011)。单因素和多因素分析表明,总生存期的独立危险因素为临床分期、 表达和 分化(均P≤0.001)。 在LUAD中与预后显著相关。共获得1174个差异基因并进行WGCNA,以构建LUAD中的共表达网络。GO和KEGG通路富集分析显示其与金黄色葡萄球菌感染、NOD样受体信号通路等相关。LUAD生存分析结果表明,与 相关的基因 和 与LUAD预后显著相关。

结论

的高表达与LUAD的预后不良相关,有望在未来成为LUAD的治疗靶点和预后评估指标。然而,相关结果需要进一步研究和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e54/9271448/ca78ed49e495/tlcr-11-06-1119-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验