Department of Biology, Concordia University, Montreal, Quebec, Canada.
PLoS One. 2022 Jul 14;17(7):e0271199. doi: 10.1371/journal.pone.0271199. eCollection 2022.
Vacuoles in plants and fungi play critical roles in cell metabolism and osmoregulation. To support these functions, vacuoles change their morphology, e.g. they fragment when these organisms are challenged with draught, high salinity or metabolic stress (e.g. acetate accumulation). In turn, morphology reflects an equilibrium between membrane fusion and fission that determines size, shape and copy number. By studying Saccharomyces cerevisiae and its vacuole as models, conserved molecular mechanisms responsible for fusion have been revealed. However, a detailed understanding of vacuole fission and how these opposing processes respond to metabolism or osmoregulation remain elusive. Herein we describe a new fluorometric assay to measure yeast vacuole fission in vitro. For proof-of-concept, we use this assay to confirm that acetate, a metabolic stressor, triggers vacuole fission and show it blocks homotypic vacuole fusion in vitro. Similarly, hypertonic stress induced by sorbitol or glucose caused robust vacuole fission in vitro whilst inhibiting fusion. Using wortmannin to inhibit phosphatidylinositol (PI) -kinases or rGyp1-46 to inactivate Rab-GTPases, we show that acetate stress likely targets PI signaling, whereas osmotic stress affects Rab signaling on vacuole membranes to stimulate fission. This study sets the stage for further investigation into the mechanisms that change vacuole morphology to support cell metabolism and osmoregulation.
植物和真菌中的液泡在细胞代谢和渗透调节中发挥着关键作用。为了支持这些功能,液泡会改变其形态,例如,当这些生物受到干旱、高盐度或代谢应激(例如乙酸积累)的挑战时,它们会发生片段化。反过来,形态反映了膜融合和裂变之间的平衡,决定了大小、形状和拷贝数。通过研究酿酒酵母及其液泡作为模型,已经揭示了负责融合的保守分子机制。然而,液泡裂变的详细机制以及这些相反过程如何响应代谢或渗透调节仍不清楚。在此,我们描述了一种新的荧光测定法,用于测量酵母液泡在体外的裂变。作为概念验证,我们使用该测定法证实了乙酸(一种代谢应激物)触发液泡裂变,并表明它在体外阻止同源液泡融合。类似地,山梨醇或葡萄糖引起的高渗胁迫在体外引起强烈的液泡裂变,同时抑制融合。使用wortmannin 抑制磷脂酰肌醇(PI)-激酶或 rGyp1-46 使 Rab-GTPases 失活,我们表明乙酸胁迫可能靶向 PI 信号,而渗透胁迫影响液泡膜上的 Rab 信号以刺激裂变。这项研究为进一步研究改变液泡形态以支持细胞代谢和渗透调节的机制奠定了基础。