Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Locomotion Lab, Department of Integrative Physiology, University of Colorado, Boulder, Colorado.
J Appl Physiol (1985). 2022 Sep 1;133(3):766-776. doi: 10.1152/japplphysiol.00086.2022. Epub 2022 Jul 14.
The benefits of drafting for elite marathon runners are intuitive, but the quantitative energetic and time savings are still unclear due to the different methods used for converting aerodynamic drag force reductions to gross metabolic power savings. Further, we lack a mechanistic understanding of the relationship between aerodynamic drag forces and ground reaction forces (GRFs) over a range of running velocities. Here, we quantified how small horizontal impeding forces affect gross metabolic power and GRF over a range of velocities in competitive runners. In three sessions, 12 runners completed six 5-min trials with 5 min of recovery in-between. We tested one velocity per session (12, 14, and 16 km/h), at three horizontal impeding force conditions (0, 4, and 8 N) applied at the waist of the runners. On average, gross metabolic power increased by 6.13% per 1% body weight of horizontal impeding force but the increases varied considerably between individuals (4.17%-8.14%). With greater horizontal impeding force, braking GRF impulses decreased, whereas propulsive GRF impulses increased, but the impulses were not related to individual changes in gross metabolic power. Combining our findings with those of previous aerodynamics studies, we estimate that for a solo runner (52 kg) at 2-h marathon pace, overcoming aerodynamic drag force (1.39% BW) comprises 7.8% of their gross metabolic power and drafting can save between 3 min 42 s and 5 min 29 s. We measured the metabolic and biomechanical effects of small horizontal impeding forces (representing realistic aerodynamic drag forces) on high-caliber runners across a range of velocities. Combining our metabolic results with existing aerodynamic models indicates that at 2-h marathon pace, optimal drafting likely allows a marathoner to run between 3 min 42 s and 5 min 29 s faster. Our rule-of-thumb (∼6% increase in gross metabolic power per 1% body weight of horizontal impeding force) will allow others to estimate the performance enhancement of different drafting formations.
对于精英马拉松跑者来说, drafting 的好处是直观的,但由于将空气动力阻力减小转化为总代谢功率节省的方法不同,定量的能量和时间节省仍不清楚。此外,我们缺乏对空气动力阻力与地面反作用力(GRF)在一系列跑步速度下的关系的机械理解。在这里,我们量化了在一系列速度下,小的水平阻碍力如何影响总代谢功率和 GRF。在三次测试中,12 名跑步者在每次测试中完成了 6 个 5 分钟的试验,每个试验之间有 5 分钟的恢复期。我们在三个水平阻碍力条件(0、4 和 8 N)下测试了一个速度(12、14 和 16 km/h),这些力施加在跑步者的腰部。平均而言,总代谢功率每增加 1%体重的水平阻碍力增加 6.13%,但个体之间的增加差异很大(4.17%-8.14%)。随着水平阻碍力的增加,制动 GRF 冲量减小,而推进 GRF 冲量增加,但冲量与总代谢功率的个体变化无关。将我们的发现与以前的空气动力学研究结合起来,我们估计对于一个以 2 小时马拉松速度独自跑步的人(52 公斤),克服空气动力阻力(1.39% BW)占其总代谢功率的 7.8%,而跟随跑可以节省 3 分 42 秒至 5 分 29 秒。我们测量了小水平阻碍力(代表现实空气动力阻力)对高水准跑步者在一系列速度下的代谢和生物力学影响。将我们的代谢结果与现有的空气动力学模型结合起来表明,以 2 小时马拉松速度,最佳的跟随跑可能使马拉松运动员的速度提高 3 分 42 秒至 5 分 29 秒。我们的经验法则(每 1%体重的水平阻碍力增加 6%会导致总代谢功率增加)将允许其他人估计不同跟随跑形式的性能提升。