Suppr超能文献

基于3.0 T磁共振多参数成像的影像组学机器学习及外部验证对不同比例前列腺导管内癌的预测

Radiomic Machine Learning and External Validation Based on 3.0 T mpMRI for Prediction of Intraductal Carcinoma of Prostate With Different Proportion.

作者信息

Yang Ling, Li Zhengyan, Liang Xu, Xu Jingxu, Cai Yusen, Huang Chencui, Zhang Mengni, Yao Jin, Song Bin

机构信息

Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.

Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Front Oncol. 2022 Jun 28;12:934291. doi: 10.3389/fonc.2022.934291. eCollection 2022.

Abstract

PURPOSE

To assess the association of radiomics features based on multiparametric MRI (mpMRI) with the proportion of intraductal carcinoma of prostate (IDC-P) and validate the predictive models.

MATERIALS AND METHODS

We retrospectively included pre-treatment MR images of prostate cancer (PCa) with IDC components of high proportion (≥10%, hpIDC-P), low proportion (<10%, lpIDC-P), and pure acinar adenocarcinoma (PAC) from our institution for training and internal validation and cooperated cohort for external validation. Normalized images of T2WI, diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) map, and dynamic contrast enhanced (DCE) sequences were used for radiomics modeling. The clinical model was built based on serum total prostate specific antigen (tPSA) and Gleason score (GS), and the integrated model was the combination of Rad-score and clinicopathological data. The discrimination ability was assessed by area under the receiver operating characteristic curve (ROC-AUC) in the internal and external validation sets and compared by DeLong test.

RESULTS

Overall, 97 patients with hpIDC-P, 87 lpIDC-P, and 78 PAC were included for training and internal validation, and 11, 16, and 19 patients for external validation. The integrated model for predicting hpIDC-P got the best ROC-AUC of 0.88 (95%CI = 0.83-0.93) in internal and 0.86 (95%CI = 0.72-1.0) in external validation, which both outperformed clinical models (AUC=0.78, 95% CI = 0.72-0.85, AUC=0.69, 95% CI = 0.5-0.85, respectively) based solely on GS, and the radiomics model (AUC=0.85, 95% CI = 0.79-0.91) was slightly inferior to the integrated model and better than the clinical model in internal dataset. The integrated model for predicting lpIDC-P outperformed both radiomics and clinical models in the internal dataset, while slightly inferior to the integrated model for predicting hpIDC-P.

CONCLUSIONS

Radiomics signature improved differentiation of both hpIDC-P and lpIDC-P versus PAC when compared with the clinical model based on Gleason score, and was validated in an external cohort.

摘要

目的

评估基于多参数磁共振成像(mpMRI)的影像组学特征与前列腺导管内癌(IDC-P)比例之间的关联,并验证预测模型。

材料与方法

我们回顾性纳入了来自本机构的前列腺癌(PCa)患者的治疗前磁共振图像,这些患者包括高比例(≥10%,hpIDC-P)、低比例(<10%,lpIDC-P)的IDC成分以及纯腺泡腺癌(PAC),用于训练和内部验证,并纳入合作队列进行外部验证。使用T2加权成像(T2WI)、扩散加权成像(DWI)和表观扩散系数(ADC)图的归一化图像以及动态对比增强(DCE)序列进行影像组学建模。基于血清总前列腺特异性抗原(tPSA)和Gleason评分(GS)构建临床模型,综合模型是Rad评分与临床病理数据的组合。通过内部和外部验证集中的受试者操作特征曲线下面积(ROC-AUC)评估鉴别能力,并通过DeLong检验进行比较。

结果

总体而言,97例hpIDC-P患者、87例lpIDC-P患者和78例PAC患者纳入训练和内部验证,11例、16例和19例患者纳入外部验证。预测hpIDC-P的综合模型在内部验证中的最佳ROC-AUC为0.88(95%CI = 0.83 - 0.93),在外部验证中为0.86(95%CI = 0.72 - 1.0),两者均优于仅基于GS的临床模型(AUC分别为0.78,95%CI = 0.72 - 0.85;AUC为0.69,95%CI = 0.5 - 0.85),影像组学模型(AUC = 0.85,95%CI = 0.79 - 0.91)在内部数据集中略逊于综合模型但优于临床模型。预测lpIDC-P的综合模型在内部数据集中优于影像组学和临床模型,而略逊于预测hpIDC-P的综合模型。

结论

与基于Gleason评分的临床模型相比,影像组学特征改善了hpIDC-P和lpIDC-P与PAC之间的鉴别能力,并在外部队列中得到验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9269/9274129/47cdf5a2cc74/fonc-12-934291-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验