Suppr超能文献

人工智能与机器学习在前列腺癌患者管理中的应用——当前趋势与未来展望

Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management-Current Trends and Future Perspectives.

作者信息

Tătaru Octavian Sabin, Vartolomei Mihai Dorin, Rassweiler Jens J, Virgil Oșan, Lucarelli Giuseppe, Porpiglia Francesco, Amparore Daniele, Manfredi Matteo, Carrieri Giuseppe, Falagario Ugo, Terracciano Daniela, de Cobelli Ottavio, Busetto Gian Maria, Del Giudice Francesco, Ferro Matteo

机构信息

The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology from Târgu Mureș, 540142 Târgu Mureș, Romania.

Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology from Târgu Mureș, 540142 Târgu Mureș, Romania.

出版信息

Diagnostics (Basel). 2021 Feb 20;11(2):354. doi: 10.3390/diagnostics11020354.

Abstract

Artificial intelligence (AI) is the field of computer science that aims to build smart devices performing tasks that currently require human intelligence. Through machine learning (ML), the deep learning (DL) model is teaching computers to learn by example, something that human beings are doing naturally. AI is revolutionizing healthcare. Digital pathology is becoming highly assisted by AI to help researchers in analyzing larger data sets and providing faster and more accurate diagnoses of prostate cancer lesions. When applied to diagnostic imaging, AI has shown excellent accuracy in the detection of prostate lesions as well as in the prediction of patient outcomes in terms of survival and treatment response. The enormous quantity of data coming from the prostate tumor genome requires fast, reliable and accurate computing power provided by machine learning algorithms. Radiotherapy is an essential part of the treatment of prostate cancer and it is often difficult to predict its toxicity for the patients. Artificial intelligence could have a future potential role in predicting how a patient will react to the therapy side effects. These technologies could provide doctors with better insights on how to plan radiotherapy treatment. The extension of the capabilities of surgical robots for more autonomous tasks will allow them to use information from the surgical field, recognize issues and implement the proper actions without the need for human intervention.

摘要

人工智能(AI)是计算机科学领域,旨在构建能够执行当前需要人类智能才能完成任务的智能设备。通过机器学习(ML),深度学习(DL)模型正在教会计算机通过示例进行学习,而这是人类自然而然就能做到的事情。人工智能正在彻底改变医疗保健领域。数字病理学在人工智能的大力辅助下,可帮助研究人员分析更大的数据集,并对前列腺癌病变提供更快、更准确的诊断。当应用于诊断成像时,人工智能在检测前列腺病变以及预测患者在生存和治疗反应方面的预后方面表现出了出色的准确性。来自前列腺肿瘤基因组的海量数据需要机器学习算法提供快速、可靠和准确的计算能力。放射治疗是前列腺癌治疗的重要组成部分,通常很难预测其对患者的毒性。人工智能在预测患者对治疗副作用的反应方面可能具有未来潜在作用。这些技术可以为医生提供有关如何规划放射治疗的更好见解。扩展手术机器人执行更多自主任务的能力,将使它们能够利用手术领域的信息,识别问题并在无需人工干预的情况下采取适当行动。

相似文献

2
A new era: artificial intelligence and machine learning in prostate cancer.
Nat Rev Urol. 2019 Jul;16(7):391-403. doi: 10.1038/s41585-019-0193-3.
3
Revolutionizing Breast Healthcare: Harnessing the Role of Artificial Intelligence.
Cureus. 2023 Dec 8;15(12):e50203. doi: 10.7759/cureus.50203. eCollection 2023 Dec.
4
Role of Artificial Intelligence and Machine Learning in Prediction, Diagnosis, and Prognosis of Cancer.
Cureus. 2022 Nov 2;14(11):e31008. doi: 10.7759/cureus.31008. eCollection 2022 Nov.
5
Genomics and Artificial Intelligence: Prostate Cancer.
Urol Clin North Am. 2024 Feb;51(1):27-33. doi: 10.1016/j.ucl.2023.06.006. Epub 2023 Jul 31.
7
Artificial intelligence applied to breast pathology.
Virchows Arch. 2022 Jan;480(1):191-209. doi: 10.1007/s00428-021-03213-3. Epub 2021 Nov 18.
8
Applications of Artificial Intelligence in Cardiology. The Future is Already Here.
Rev Esp Cardiol (Engl Ed). 2019 Dec;72(12):1065-1075. doi: 10.1016/j.rec.2019.05.014. Epub 2019 Oct 12.
9
Artificial intelligence as the next step towards precision pathology.
J Intern Med. 2020 Jul;288(1):62-81. doi: 10.1111/joim.13030. Epub 2020 Mar 3.

引用本文的文献

1
Artificial intelligence and radiomics applications in adrenal lesions: a systematic review.
Ther Adv Urol. 2025 Aug 2;17:17562872251352553. doi: 10.1177/17562872251352553. eCollection 2025 Jan-Dec.
2
Evaluation of artificial intelligence techniques in disease diagnosis and prediction.
Discov Artif Intell. 2023;3(1):5. doi: 10.1007/s44163-023-00049-5. Epub 2023 Jan 30.
3
A prognostic model for highly aggressive prostate cancer using interpretable machine learning techniques.
Front Med (Lausanne). 2025 May 12;12:1512870. doi: 10.3389/fmed.2025.1512870. eCollection 2025.
4
Mitigating bias in prostate cancer diagnosis using synthetic data for improved AI driven Gleason grading.
NPJ Precis Oncol. 2025 May 23;9(1):151. doi: 10.1038/s41698-025-00934-5.
5
Review of different convolutional neural networks used in segmentation of prostate during fusion biopsy.
Cent European J Urol. 2025;78(1):23-39. doi: 10.5173/ceju.2024.0064. Epub 2025 Mar 21.
6
Perceptions and attitudes towards AI among trainee and qualified radiologists at selected South African training hospitals.
SA J Radiol. 2025 Jan 10;29(1):3026. doi: 10.4102/sajr.v29i1.3026. eCollection 2025.
7
Prediction of Prostate Cancer From Routine Laboratory Markers With Automated Machine Learning.
J Clin Lab Anal. 2025 Feb;39(3):e25143. doi: 10.1002/jcla.25143. Epub 2025 Jan 19.
9
Artificial intelligence for chimeric antigen receptor-based therapies: a comprehensive review of current applications and future perspectives.
Ther Adv Vaccines Immunother. 2024 Dec 16;12:25151355241305856. doi: 10.1177/25151355241305856. eCollection 2024.
10
Bias in medical AI: Implications for clinical decision-making.
PLOS Digit Health. 2024 Nov 7;3(11):e0000651. doi: 10.1371/journal.pdig.0000651. eCollection 2024 Nov.

本文引用的文献

1
A Systematic Review of Artificial Intelligence in Prostate Cancer.
Res Rep Urol. 2021 Jan 22;13:31-39. doi: 10.2147/RRU.S268596. eCollection 2021.
2
Artificial intelligence-based radiotherapy machine parameter optimization using reinforcement learning.
Med Phys. 2020 Dec;47(12):6140-6150. doi: 10.1002/mp.14544. Epub 2020 Nov 5.
4
Applications of neural networks in urology: a systematic review.
Curr Opin Urol. 2020 Nov;30(6):788-807. doi: 10.1097/MOU.0000000000000814.
5
A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.
AJR Am J Roentgenol. 2021 Jan;216(1):111-116. doi: 10.2214/AJR.19.22168. Epub 2020 Nov 10.
6
Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists.
Mod Pathol. 2021 Mar;34(3):660-671. doi: 10.1038/s41379-020-0640-y. Epub 2020 Aug 5.
7
Automated reference tissue normalization of T2-weighted MR images of the prostate using object recognition.
MAGMA. 2021 Apr;34(2):309-321. doi: 10.1007/s10334-020-00871-3. Epub 2020 Jul 31.
8
Machine Learning-Based Models for Prediction of Toxicity Outcomes in Radiotherapy.
Front Oncol. 2020 Jun 5;10:790. doi: 10.3389/fonc.2020.00790. eCollection 2020.
9
Identification of areas of grading difficulties in prostate cancer and comparison with artificial intelligence assisted grading.
Virchows Arch. 2020 Dec;477(6):777-786. doi: 10.1007/s00428-020-02858-w. Epub 2020 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验