Yoo Jay J, Namdar Khashayar, Wagner Matthias W, Yeom Kristen W, Nobre Liana F, Tabori Uri, Hawkins Cynthia, Ertl-Wagner Birgit B, Khalvati Farzad
University of Toronto, Institute of Medical Science, Toronto, M5S 1A8, Canada.
Department of Diagnostic & Interventional Radiology, The Hospital for Sick Children, Toronto, M5G 1X8, Canada.
Sci Rep. 2025 Jul 1;15(1):22160. doi: 10.1038/s41598-025-06741-z.
Segmenting abnormalities is a leading problem in medical imaging. Using machine learning for segmentation generally requires manually annotated segmentations, demanding extensive time and resources from radiologists. We propose a weakly supervised approach that utilizes binary image-level labels, which are much simpler to acquire, rather than manual annotations to segment brain tumors on magnetic resonance images. The proposed method generates healthy variants of cancerous images for use as priors when training the segmentation model. However, using weakly supervised segmentations for downstream tasks such as classification can be challenging due to occasional unreliable segmentations. To address this, we propose using the generated non-cancerous variants to identify the most effective segmentations without requiring ground truths. Our proposed method generates segmentations that achieve Dice coefficients of 79.27% on the Multimodal Brain Tumor Segmentation (BraTS) 2020 dataset and 73.58% on an internal dataset of pediatric low-grade glioma (pLGG), which increase to 88.69% and 80.29%, respectively, when removing suboptimal segmentations identified using the proposed method. Using the segmentations for tumor classification results with Area Under the Characteristic Operating Curve (AUC) of 93.54% and 83.74% on the BraTS and pLGG datasets, respectively. These are comparable to using manual annotations which achieve AUCs of 95.80% and 83.03% on the BraTS and pLGG datasets, respectively.
分割异常是医学成像中的一个主要问题。使用机器学习进行分割通常需要手动标注分割结果,这需要放射科医生投入大量时间和资源。我们提出了一种弱监督方法,该方法利用二元图像级标签(获取起来要简单得多),而不是手动标注来在磁共振图像上分割脑肿瘤。所提出的方法生成癌性图像的健康变体,用作训练分割模型时的先验。然而,由于偶尔存在不可靠的分割,将弱监督分割用于分类等下游任务可能具有挑战性。为了解决这个问题,我们建议使用生成的非癌性变体来识别最有效的分割,而无需真实标注。我们提出的方法生成的分割在多模态脑肿瘤分割(BraTS)2020数据集上的Dice系数达到79.27%,在儿科低级别胶质瘤(pLGG)的内部数据集上达到73.58%,当去除使用所提出的方法识别出的次优分割时,分别提高到88.69%和80.29%。将这些分割用于肿瘤分类,在BraTS和pLGG数据集上的特征操作曲线下面积(AUC)分别为93.54%和83.74%。这些结果与使用手动标注相当,手动标注在BraTS和pLGG数据集上的AUC分别为95.80%和83.03%。