Suppr超能文献

结合冷冻电镜密度图和残基接触进行蛋白质结构预测——一个案例研究。

Combine Cryo-EM Density Map and Residue Contact for Protein Structure Prediction - A Case Study.

作者信息

Alshammari Maytha, He Jing

机构信息

Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA.

出版信息

ACM BCB. 2020 Sep;2020. doi: 10.1145/3388440.3414708.

Abstract

Cryo-electron microscopy is a major structure determination technique for large molecular machines and membrane-associated complexes. Although atomic structures have been determined directly from cryo-EM density maps with high resolutions, current structure determination methods for medium resolution (5 to 10 Å) cryo-EM maps are limited by the availability of structure templates. Secondary structure traces are lines detected from a cryo-EM density map for α-helices and β-strands of a protein. When combined with secondary structure sequence segments predicted from a protein sequence, it is possible to generate a set of likely topologies of α-traces and β-sheet traces. A topology describes the overall folding relationship among secondary structures; it is a critical piece of information for deriving the corresponding atomic structure. We propose a method for protein structure prediction that combines three sources of information: the secondary structure traces detected from the cryo-EM density map, predicted secondary structure sequence segments, and amino acid contact pairs predicted using MULTICOM. A case study shows that using amino acid contact prediction from MULTICOM improves the ranking of the true topology. Our observations convey that using a small set of highly voted secondary structure contact pairs enhances the ranking in all experiments conducted for this case.

摘要

冷冻电子显微镜是用于确定大型分子机器和膜相关复合物结构的主要技术。尽管已直接从具有高分辨率的冷冻电镜密度图确定了原子结构,但当前用于中等分辨率(5至10埃)冷冻电镜图的结构确定方法受到结构模板可用性的限制。二级结构迹线是从蛋白质的α螺旋和β链的冷冻电镜密度图中检测到的线条。当与从蛋白质序列预测的二级结构序列片段相结合时,就有可能生成一组可能的α迹线和β片层迹线拓扑结构。拓扑结构描述了二级结构之间的整体折叠关系;它是推导相应原子结构的关键信息。我们提出了一种蛋白质结构预测方法,该方法结合了三种信息来源:从冷冻电镜密度图中检测到的二级结构迹线、预测的二级结构序列片段以及使用MULTICOM预测的氨基酸接触对。一个案例研究表明,使用来自MULTICOM的氨基酸接触预测可以提高真实拓扑结构的排名。我们的观察结果表明,在针对此案例进行的所有实验中,使用一小部分高投票率的二级结构接触对可以提高排名。

相似文献

2
Combining Cryo-EM Density Map and Residue Contact for Protein Secondary Structure Topologies.
Molecules. 2021 Nov 22;26(22):7049. doi: 10.3390/molecules26227049.
3
Tracing beta strands using StrandTwister from cryo-EM density maps at medium resolutions.
Structure. 2014 Nov 4;22(11):1665-76. doi: 10.1016/j.str.2014.08.017. Epub 2014 Oct 9.
5
A Tool for Segmentation of Secondary Structures in 3D Cryo-EM Density Map Components Using Deep Convolutional Neural Networks.
Front Bioinform. 2021 Nov 3;1:710119. doi: 10.3389/fbinf.2021.710119. eCollection 2021.
6
A Dynamic Programming Algorithm for Finding the Optimal Placement of a Secondary Structure Topology in Cryo-EM Data.
J Comput Biol. 2015 Sep;22(9):837-43. doi: 10.1089/cmb.2015.0120. Epub 2015 Aug 5.
7
Modeling Beta-Traces for Beta-Barrels from Cryo-EM Density Maps.
Biomed Res Int. 2017;2017:1793213. doi: 10.1155/2017/1793213. Epub 2017 Jan 10.
9
Combining image processing and modeling to generate traces of beta-strands from cryo-EM density images of beta-barrels.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3941-4. doi: 10.1109/EMBC.2014.6944486.
10
Improved efficiency in cryo-EM secondary structure topology determination from inaccurate data.
J Bioinform Comput Biol. 2012 Jun;10(3):1242006. doi: 10.1142/S0219720012420061.

引用本文的文献

1
Protein structure accuracy estimation using geometry-complete perceptron networks.
Protein Sci. 2024 Mar;33(3):e4932. doi: 10.1002/pro.4932.
2
Combining Cryo-EM Density Map and Residue Contact for Protein Secondary Structure Topologies.
Molecules. 2021 Nov 22;26(22):7049. doi: 10.3390/molecules26227049.

本文引用的文献

1
Protein secondary structure detection in intermediate-resolution cryo-EM maps using deep learning.
Nat Methods. 2019 Sep;16(9):911-917. doi: 10.1038/s41592-019-0500-1. Epub 2019 Jul 29.
3
Deep Convolutional Neural Networks for Detecting Secondary Structures in Protein Density Maps from Cryo-Electron Microscopy.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016 Dec;2016:41-46. doi: 10.1109/BIBM.2016.7822490. Epub 2017 Jan 19.
4
DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
Bioinformatics. 2018 May 1;34(9):1466-1472. doi: 10.1093/bioinformatics/btx781.
5
High-Resolution Cryo-EM Maps and Models: A Crystallographer's Perspective.
Structure. 2017 Oct 3;25(10):1589-1597.e1. doi: 10.1016/j.str.2017.07.012. Epub 2017 Aug 31.
6
An Effective Computational Method Incorporating Multiple Secondary Structure Predictions in Topology Determination for Cryo-EM Images.
IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):578-586. doi: 10.1109/TCBB.2016.2543721. Epub 2016 Mar 17.
7
2.9 Å Resolution Cryo-EM 3D Reconstruction of Close-Packed Virus Particles.
Structure. 2016 Feb 2;24(2):319-28. doi: 10.1016/j.str.2015.12.006. Epub 2016 Jan 14.
8
Solving the Secondary Structure Matching Problem in Cryo-EM De Novo Modeling Using a Constrained K-Shortest Path Graph Algorithm.
IEEE/ACM Trans Comput Biol Bioinform. 2014 Mar-Apr;11(2):419-30. doi: 10.1109/TCBB.2014.2302803.
9
A Dynamic Programming Algorithm for Finding the Optimal Placement of a Secondary Structure Topology in Cryo-EM Data.
J Comput Biol. 2015 Sep;22(9):837-43. doi: 10.1089/cmb.2015.0120. Epub 2015 Aug 5.
10
MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins.
Bioinformatics. 2015 Apr 1;31(7):999-1006. doi: 10.1093/bioinformatics/btu791. Epub 2014 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验