Suppr超能文献

肿瘤学临床试验中事件时间终点分析的统计学考虑:以 CAR-T 免疫疗法研究为例。

Statistical Considerations for Analyses of Time-To-Event Endpoints in Oncology Clinical Trials: Illustrations with CAR-T Immunotherapy Studies.

机构信息

Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.

出版信息

Clin Cancer Res. 2022 Sep 15;28(18):3940-3949. doi: 10.1158/1078-0432.CCR-22-0560.

Abstract

Chimeric antigen receptor T-cell (CAR-T) therapy is an exciting development in the field of cancer immunology and has received a lot of interest in recent years. Many time-to-event (TTE) endpoints related to relapse, disease progression, and remission are analyzed in CAR-T studies to assess treatment efficacy. Definitions of these TTE endpoints are not always consistent, even for the same outcomes (e.g., progression-free survival), which often stems from analysis choices regarding which events to consider as part of the composite endpoint, censoring or competing risk in the analysis. Subsequent therapies such as hematopoietic stem cell transplantation are common but are not treated the same in different studies. Standard survival analysis methods are commonly applied to TTE analyses but often without full consideration of the assumptions inherent in the chosen analysis. We highlight two important issues of TTE analysis that arise in CAR-T studies, as well as in other settings in oncology: the handling of competing risks and assessing the association between a time-varying (post-infusion) exposure and the TTE outcome. We review existing analytical methods, including the cumulative incidence function and regression models for analysis of competing risks, and landmark and time-varying covariate analysis for analysis of post-infusion exposures. We clarify the scientific questions that the different analytical approaches address and illustrate how the application of an inappropriate method could lead to different results using data from multiple published CAR-T studies. Codes for implementing these methods in standard statistical software are provided.

摘要

嵌合抗原受体 T 细胞(CAR-T)疗法是癌症免疫学领域的一项令人兴奋的进展,近年来受到了广泛关注。许多与复发、疾病进展和缓解相关的时间事件(TTE)终点在 CAR-T 研究中进行分析,以评估治疗效果。这些 TTE 终点的定义并不总是一致的,即使对于相同的结果(例如无进展生存期)也是如此,这通常源于分析中考虑哪些事件作为复合终点的一部分、分析中的删失或竞争风险的选择。随后的治疗方法,如造血干细胞移植,很常见,但在不同的研究中处理方式不同。标准生存分析方法通常应用于 TTE 分析,但通常没有充分考虑所选分析中固有的假设。我们强调了在 CAR-T 研究中以及肿瘤学其他领域中出现的两个重要的 TTE 分析问题:竞争风险的处理和评估时间变化(输注后)暴露与 TTE 结果之间的关联。我们回顾了现有的分析方法,包括用于分析竞争风险的累积发生率函数和回归模型,以及用于分析输注后暴露的 landmark 和时变协变量分析。我们阐明了不同分析方法解决的科学问题,并说明了使用来自多个已发表的 CAR-T 研究的数据,应用不合适的方法如何导致不同的结果。提供了在标准统计软件中实现这些方法的代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb0f/9662883/9c071a7f8251/3940fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验