Dieleman Catherine M, Day Nicola J, Holloway Jean E, Baltzer Jennifer, Douglas Thomas A, Turetsky Merritt R
Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada; School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada.
Biology Department, Wilfrid Laurier University, Waterloo, Ontario, Canada; School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
Sci Total Environ. 2022 Nov 1;845:157288. doi: 10.1016/j.scitotenv.2022.157288. Epub 2022 Jul 12.
Rapid climate warming across northern high latitudes is leading to permafrost thaw and ecosystem carbon release while simultaneously impacting other biogeochemical cycles including nitrogen. We used a two-year laboratory incubation study to quantify concomitant changes in carbon and nitrogen pool quantity and quality as drivers of potential CO production in thawed permafrost soils from eight soil cores collected across the southern Northwest Territories (NWT), Canada. These data were contextualized via in situ annual thaw depth measurements from 2015 to 2019 at 40 study sites that varied in burn history. We found with increasing time since experimental thaw the dissolved carbon and nitrogen pool quality significantly declined, indicating sustained microbial processing and selective immobilization across both pools. Piecewise structural equation modeling revealed CO trends were predominantly predicted by initial soil carbon content with minimal influence of dissolved phase carbon. Using these results, we provide a first-order estimate of potential near-surface permafrost soil losses of up to 80 g C m over one year in southern NWT, exceeding regional historic mean primary productivity rates in some areas. Taken together, this research provides mechanistic knowledge needed to further constrain the permafrost‑carbon feedback and parameterize Earth system models, while building on empirical evidence that permafrost soils are at high risk of becoming weaker carbon sinks or even significant carbon sources under a changing climate.
北半球高纬度地区气候迅速变暖,导致永久冻土融化和生态系统碳释放,同时影响包括氮在内的其他生物地球化学循环。我们进行了一项为期两年的实验室培养研究,以量化加拿大西北地区(NWT)南部采集的八个土壤芯解冻永久冻土中碳和氮库数量及质量的同步变化,这些变化是潜在二氧化碳产生的驱动因素。通过2015年至2019年在40个不同火烧历史的研究地点进行的原位年解冻深度测量,将这些数据置于背景之中。我们发现,自实验解冻以来,随着时间的增加,溶解碳和氮库质量显著下降,这表明两个库中微生物持续进行处理和选择性固定。分段结构方程模型显示,二氧化碳趋势主要由初始土壤碳含量预测,溶解相碳的影响最小。利用这些结果,我们对西北地区南部近地表永久冻土土壤一年潜在损失进行了一级估算,高达80克碳/平方米,超过了一些地区的区域历史平均初级生产力速率。综上所述,这项研究提供了进一步限制永久冻土-碳反馈并为地球系统模型参数化所需的机制知识,同时基于经验证据表明,在气候变化的情况下,永久冻土土壤极有可能成为较弱的碳汇甚至重要的碳源。