Suppr超能文献

基于深度学习和无偏体视学的组织切片自动细胞计数。

Automated Cell Counts on Tissue Sections by Deep Learning and Unbiased Stereology.

机构信息

Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA.

Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA.

出版信息

J Chem Neuroanat. 2019 Mar;96:94-101. doi: 10.1016/j.jchemneu.2018.12.010. Epub 2018 Dec 27.

Abstract

In recent decades stereology-based studies have played a significant role in understanding brain aging and developing novel drug discovery strategies for treatment of neurological disease and mental illness. A major obstacle to further progress in a wide range of neuroscience sub-disciplines remains the lack of high-throughput technology for stereology analyses. Though founded on methodologically unbiased principles, commercially available stereology systems still rely on well-trained humans to manually count hundreds of cells within each region of interest (ROI). Even for a simple study with 10 controls and 10 treated animals, cell counts typically require over a month of tedious labor and high costs. Furthermore, these studies are prone to errors and poor reproducibility due to human factors such as subjectivity, variable training, recognition bias, and fatigue. Here we propose a deep neural network-stereology combination to automatically segment and estimate the total number of immunostained neurons on tissue sections. Our three-step approach consists of (1) creating extended-depth-of-field (EDF) images from z-stacks of images (disector stacks); (2) applying an adaptive segmentation algorithm (ASA) to label stained cells in the EDF images (i.e., create masks) for training a convolutional neural network (CNN); and (3) use the trained CNN model to automatically segment and count the total number of cells in test disector stacks using the optical fractionator method. The automated stereology approach shows less than 2% error and over 5× greater efficiency compared to counts by a trained human, without the subjectivity, tedium, and poor precision associated with conventional stereology.

摘要

在最近几十年中,基于体视学的研究在理解大脑衰老和开发新的药物发现策略以治疗神经疾病和精神疾病方面发挥了重要作用。在广泛的神经科学子学科中进一步取得进展的主要障碍仍然是缺乏高通量的体视学分析技术。尽管基于无偏方法学原则,但商业上可用的体视学系统仍然依赖经过良好培训的人类来手动计数每个感兴趣区域 (ROI) 内的数百个细胞。即使对于一个简单的研究,有 10 个对照和 10 个处理动物,细胞计数通常需要超过一个月的繁琐劳动和高昂成本。此外,由于主观性、可变培训、识别偏差和疲劳等人为因素,这些研究容易出现错误和可重复性差的问题。在这里,我们提出了一种深度学习网络-体视学组合,以自动分割和估计组织切片上免疫染色神经元的总数。我们的三步方法包括:(1)从图像的 z 堆叠(disector 堆叠)创建扩展景深 (EDF) 图像;(2) 应用自适应分割算法 (ASA) 对 EDF 图像中的染色细胞进行标记(即创建蒙版),以训练卷积神经网络 (CNN);(3) 使用训练好的 CNN 模型使用光学分数法自动分割和计数测试 disector 堆栈中的总细胞数。与经过训练的人类计数相比,自动化体视学方法的误差小于 2%,效率提高了 5 倍以上,而没有传统体视学中与主观性、繁琐和精度差相关的缺点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验