Scott Allison, Vanbroekhoven Ans, Joossen Cedric, Knutsen Chris, Govezensky David, Anders Hans-Joachim, Cannon James, Salvas Joanny, Dingle Michael, Hutchins Patrick, Merker Petra, Villari Philip, Ramsey Stephanie, Cundell Anthony, Navarro Victoria, Franz-Riethdorf Margit
PEMM/Azbil North America Research and Development: BioVigilant, 2005 W. Ruthrauff Rd. #151, Tucson, AZ 85705.
BioPhorum/Sanofi, Cipalstraat 8, 2440 Geel, Belgium.
PDA J Pharm Sci Technol. 2023 Jan-Feb;77(1):2-9. doi: 10.5731/pdajpst.2021.012726. Epub 2022 Jul 15.
The transition from traditional growth-based microbial detection methods to continuous bio-fluorescent particle counting methods represents a paradigm shift, because the results will be non-equivalent in terms of microbial counts, and a continuous, rather than periodic, data stream will be available. Bio-fluorescent particle counting technology, a type of rapid microbiological method, uses the detection of the intrinsic fluorescence of microbial cells to enumerate bioburden levels in air or water samples, continuously. The reported unit is commonly referred to as an autofluorescence unit, which is not dependent upon growth, as is the traditional method. The following article discusses challenges encountered when implementing this modern technology, and the perspective from a consortium of four industry working groups on navigating these challenges.
从基于传统生长的微生物检测方法向连续生物荧光颗粒计数方法的转变代表了一种范式转变,因为就微生物数量而言,结果将不相等,并且将获得连续而非周期性的数据流。生物荧光颗粒计数技术是一种快速微生物学方法,它利用检测微生物细胞的固有荧光来连续测定空气或水样中的生物负荷水平。报告的单位通常称为自发荧光单位,它不像传统方法那样依赖于生长。以下文章讨论了实施这项现代技术时遇到的挑战,以及四个行业工作组组成的联盟应对这些挑战的观点。