State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China.
Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
J Dairy Sci. 2022 Aug;105(8):6895-6908. doi: 10.3168/jds.2021-21754. Epub 2022 Jul 13.
Endoplasmic reticulum (ER) stress can be induced by various stimuli and triggers the unfolded protein response to activate intracellular signaling pathways that are mediated by 3 ER-resident sensors: inositol requiring protein-1α (IRE1α), PKR-like ER kinase (PERK), and activating transcription factor-6 (ATF6). In nonruminants, ER stress plays a critical role in hepatic insulin resistance. However, whether ER stress plays a role in nonesterified fatty acid (NEFA)-induced hepatic insulin resistance in dairy cows is still unknown. Experiments were conducted using primary bovine hepatocytes isolated from 5 healthy calves (body weight: 30-40 kg; 1 d old). First, hepatocytes were treated with NEFA (1.2 mM) for 0.5, 1, 2, 3, 5, 7, 9, or 12 h. Treatment with NEFA elevated abundance of phosphorylated IRE1α and PERK, and cleavage of ATF6, along with the ER stress-associated genes XBP1, ATF4, and DNAJC3, resulting in both linear and quadratic effects. Furthermore, ER Tracker red staining and transmission electron microscopy results indicated that ER was dilated and degranulated in response to NEFA treatment, suggesting that ER stress was induced by NEFA treatment in bovine hepatocytes. Second, to assess the effect of ER stress on NEFA-induced insulin resistance, hepatocytes were treated with different concentrations of NEFA (0, 0.6, 1.2, or 2.4 mM) for 5 h with or without tauroursodeoxycholic acid (TUDCA, a canonical inhibitor of ER stress). Here, NEFA induced insulin resistance by increasing the abundance of insulin receptor substrate-1 (IRS1) phosphorylation at the inhibitory residue Ser 307 (S307) and decreasing the abundance of phosphorylated protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in a dose-dependent manner. This was accompanied by upregulation of an abundance of gluconeogenic genes [phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6-Pase)]. These detrimental effects of NEFA on insulin signaling could be reversed with TUDCA treatment, indicating a mechanistic link between ER stress and NEFA-induced insulin resistance. In a third experiment, pGPU6/GFP/Neo vectors containing short hairpin RNA targeting IRE1α were used to silence IRE1α transcription, and GSK2656157 (PERK phosphorylation inhibitor) and 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF; an inhibitor of ATF6) were used to block PERK and ATF6 branches, respectively. Notably, the silencing of the IRE1α branch improved NEFA-induced insulin resistance by decreasing phosphorylation of IRS1 (S307) and increasing phosphorylation of AKT and GSK3β, and reducing PEPCK and G6-Pase mRNA abundance, which was likely dependent on IRE1α kinase activity. Similarly, blockage of the PERK branch increased phosphorylation of AKT and GSK3β, and reduced PEPCK and G6-Pase mRNA abundance, but had no effect on phosphorylation of IRS1 (S307). However, results showed that inhibition of the ATF6 branch had no effects on phosphorylation of IRS1, AKT, and GSK3β, and instead found increasing PEPCK and G6-Pase mRNA abundance. Taken together, data in the present study found that impeding IRE1α and PERK signaling might aid in relieving hepatic insulin resistance. However, the more detailed mechanisms of how IRE1α and PERK signaling contribute to hepatic insulin resistance in dairy cows remain to be determined.
内质网(ER)应激可被各种刺激诱导,并触发未折叠蛋白反应,以激活细胞内信号通路,这些信号通路由 3 种驻留在 ER 中的传感器介导:肌醇需求蛋白 1α(IRE1α)、PKR 样 ER 激酶(PERK)和激活转录因子 6(ATF6)。在非反刍动物中,ER 应激在肝胰岛素抵抗中起关键作用。然而,ER 应激是否在奶牛的非酯化脂肪酸(NEFA)诱导的肝胰岛素抵抗中发挥作用仍不清楚。本实验使用从 5 头健康小牛(体重:30-40kg;1d 龄)分离的原代牛肝细胞进行。首先,用 NEFA(1.2mM)处理肝细胞 0.5、1、2、3、5、7、9 或 12h。用 NEFA 处理会增加磷酸化 IRE1α 和 PERK 的丰度,以及 ATF6 的切割,同时伴随着 ER 应激相关基因 XBP1、ATF4 和 DNAJC3 的表达,这导致了线性和二次效应。此外,ER 追踪红色染色和透射电子显微镜结果表明,ER 在内质网应激相关基因 XBP1、ATF4 和 DNAJC3 的表达过程中被扩张和脱粒,提示 NEFA 处理诱导了牛肝细胞的 ER 应激。其次,为了评估 ER 应激对 NEFA 诱导的胰岛素抵抗的影响,用不同浓度的 NEFA(0、0.6、1.2 或 2.4mM)处理肝细胞 5h,并用牛磺熊脱氧胆酸(TUDCA,一种经典的 ER 应激抑制剂)处理或不处理。这里,NEFA 通过增加胰岛素受体底物 1(IRS1)在抑制性残基 Ser 307(S307)的磷酸化水平和降低磷酸化蛋白激酶 B(AKT)和糖原合酶激酶 3β(GSK3β)的丰度来诱导胰岛素抵抗,这种作用呈剂量依赖性。同时伴随着糖异生基因[磷酸烯醇丙酮酸羧激酶(PEPCK)和葡萄糖-6-磷酸酶(G6-Pase)]的丰度上调。TUDCA 处理可以逆转 NEFA 对胰岛素信号的这些有害影响,表明 ER 应激和 NEFA 诱导的胰岛素抵抗之间存在机制联系。在第三个实验中,使用含有靶向 IRE1α 的短发夹 RNA 的 pGPU6/GFP/Neo 载体沉默 IRE1α 转录,并用 GSK2656157(PERK 磷酸化抑制剂)和 4-(2-氨基乙基)苯磺酰氟(AEBSF;ATF6 的抑制剂)分别阻断 PERK 和 ATF6 分支。值得注意的是,IRE1α 分支的沉默通过降低 IRS1(S307)的磷酸化和增加 AKT 和 GSK3β 的磷酸化,以及降低 PEPCK 和 G6-Pase mRNA 的丰度,从而改善了 NEFA 诱导的胰岛素抵抗,这可能依赖于 IRE1α 激酶活性。同样,阻断 PERK 分支增加了 AKT 和 GSK3β 的磷酸化,并降低了 PEPCK 和 G6-Pase mRNA 的丰度,但对 IRS1(S307)的磷酸化没有影响。然而,结果表明,抑制 ATF6 分支对 IRS1、AKT 和 GSK3β 的磷酸化没有影响,反而发现 PEPCK 和 G6-Pase mRNA 的丰度增加。综上所述,本研究发现,抑制 IRE1α 和 PERK 信号可能有助于缓解肝胰岛素抵抗。然而,IRE1α 和 PERK 信号如何在奶牛中导致肝胰岛素抵抗的更详细机制仍有待确定。