Zhou Gang, Wang Peifang, Hu Bin, Shen Xinyue, Liu Chongchong, Tao Weixiang, Huang Peilin, Liu Lizhe
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China.
Nat Commun. 2022 Jul 15;13(1):4106. doi: 10.1038/s41467-022-31874-4.
While acidic oxygen evolution reaction plays a critical role in electrochemical energy conversion devices, the sluggish reaction kinetics and poor stability in acidic electrolyte challenges materials development. Unlike traditional nano-structuring approaches, this work focuses on the structural symmetry breaking to rearrange spin electron occupation and optimize spin-dependent orbital interaction to alter charge transfer between catalysts and reactants. Herein, we propose an atomic half-disordering strategy in multistage-hybridized BiErRuO pyrochlores to reconfigure orbital degeneracy and spin-related electron occupation. This strategy involves controlling the bonding interaction of Bi-6s lone pair electrons, in which partial atom rearrangement makes the active sites transform into asymmetric high-spin states from symmetric low-spin states. As a result, the half-disordered BiErRuO pyrochlores demonstrate an overpotential of ~0.18 V at 10 mA cm accompanied with excellent stability of 100 h in acidic electrolyte. Our findings not only provide a strategy for designing atom-disorder-related catalysts, but also provides a deeper understanding of the spin-related acidic oxygen evolution reaction kinetics.
虽然析氧反应在电化学能量转换装置中起着关键作用,但反应动力学缓慢以及在酸性电解质中稳定性较差对材料开发提出了挑战。与传统的纳米结构化方法不同,这项工作侧重于打破结构对称性,以重新排列自旋电子占据并优化自旋相关的轨道相互作用,从而改变催化剂与反应物之间的电荷转移。在此,我们提出了一种在多级杂化BiErRuO焦绿石中的原子半无序策略,以重新配置轨道简并性和自旋相关的电子占据。该策略涉及控制Bi-6s孤对电子的键合相互作用,其中部分原子重排使活性位点从对称的低自旋态转变为不对称的高自旋态。结果,半无序的BiErRuO焦绿石在10 mA cm时表现出约0.18 V的过电位,并在酸性电解质中具有100 h的出色稳定性。我们的发现不仅为设计与原子无序相关的催化剂提供了一种策略,还为自旋相关的析氧反应动力学提供了更深入的理解。