Suppr超能文献

通过尖峰神经元学习网络实现具有忆阻式氮还原活性的充电催化剂。

Recharged Catalyst with Memristive Nitrogen Reduction Activity through Learning Networks of Spiking Neurons.

作者信息

Zhou Gang, Li Tinghui, Huang Rong, Wang Peifang, Hu Bin, Li Hao, Liu Lizhe, Sun Yan

机构信息

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.

College of Electronic Engineering, Guangxi Normal University, Guilin 541004, P. R. China.

出版信息

J Am Chem Soc. 2021 Apr 14;143(14):5378-5385. doi: 10.1021/jacs.0c12458. Epub 2021 Mar 31.

Abstract

Electrocatalysis from N to NH has been increasingly studied because it provides an environmentally friendly avenue to take the place of the current Haber-Bosch method. Unfortunately, the conversion of N to NH is far below the necessary level for implementation at a large scale. Inspired by signal memory in a spiking neural network, we developed rechargeable catalyst technology to activate and remember the optimal catalytic activity using manageable electrical stimulation. Herein, we designed double-faced FeReS Janus layers that mimic a multiple-neuron network consisting of resistive switching synapses, enabling a series of intriguing multiphase transitions to activate undiscovered catalytic activity; the activation energy barrier is clearly reduced via an active site conversion between two nonequivalent surfaces. Electrical field-stimulated FeReS demonstrates a Faradaic efficiency of 43% and the highest rate of 203 μg h mg toward NH synthesis. Moreover, this rechargeable catalyst displays unprecedented catalytic performance that persists for up to 216 h and can be repeatedly activated through a simple charging operation.

摘要

从N到NH的电催化研究日益增多,因为它提供了一条环境友好的途径来取代当前的哈伯-博施法。不幸的是,N到NH的转化率远低于大规模实施所需的水平。受尖峰神经网络中信号记忆的启发,我们开发了可充电催化剂技术,通过可控的电刺激来激活并记住最佳催化活性。在此,我们设计了双面FeReS 雅努斯层,其模仿了由电阻开关突触组成的多神经元网络,能够实现一系列有趣的多相转变,从而激活未被发现的催化活性;通过两个不等价表面之间的活性位点转换,活化能垒明显降低。电场刺激的FeReS对NH合成的法拉第效率为43%,最高速率为203 μg h mg。此外,这种可充电催化剂表现出前所未有的催化性能,可持续长达216小时,并且可以通过简单的充电操作反复激活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验