Suppr超能文献

罗氏 PD 移动应用程序远程监测早期帕金森病的可靠性和有效性。

Reliability and validity of the Roche PD Mobile Application for remote monitoring of early Parkinson's disease.

机构信息

Roche Pharma Research and Early Development, pRED Informatics, Pharmaceutical Sciences, Clinical Pharmacology, and Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland.

Department of Neurology, McGill University, Montreal General Hospital, Montreal, QC, Canada.

出版信息

Sci Rep. 2022 Jul 15;12(1):12081. doi: 10.1038/s41598-022-15874-4.

Abstract

Digital health technologies enable remote and therefore frequent measurement of motor signs, potentially providing reliable and valid estimates of motor sign severity and progression in Parkinson's disease (PD). The Roche PD Mobile Application v2 was developed to measure bradykinesia, bradyphrenia and speech, tremor, gait and balance. It comprises 10 smartphone active tests (with ½ tests administered daily), as well as daily passive monitoring via a smartphone and smartwatch. It was studied in 316 early-stage PD participants who performed daily active tests at home then carried a smartphone and wore a smartwatch throughout the day for passive monitoring (study NCT03100149). Here, we report baseline data. Adherence was excellent (96.29%). All pre-specified sensor features exhibited good-to-excellent test-retest reliability (median intraclass correlation coefficient = 0.9), and correlated with corresponding Movement Disorder Society-Unified Parkinson's Disease Rating Scale items (rho: 0.12-0.71). These findings demonstrate the preliminary reliability and validity of remote at-home quantification of motor sign severity with the Roche PD Mobile Application v2 in individuals with early PD.

摘要

数字健康技术能够远程进行,因此可以频繁地测量运动迹象,从而有可能对帕金森病 (PD) 患者的运动迹象严重程度和进展情况提供可靠和有效的评估。罗氏 PD 移动应用程序 v2 旨在测量运动迟缓、运动迟缓和言语、震颤、步态和平衡。它包括 10 个智能手机主动测试(每天进行一半测试),以及通过智能手机和智能手表进行日常被动监测。该应用程序在 316 名早期 PD 参与者中进行了研究,这些参与者在家中进行每日主动测试,然后全天携带智能手机并佩戴智能手表进行被动监测(研究 NCT03100149)。在这里,我们报告基线数据。 依从性非常好(96.29%)。所有预先指定的传感器特征均表现出良好到优秀的重测信度(中位数组内相关系数=0.9),并与相应的运动障碍协会-统一帕金森病评定量表项目相关(rho:0.12-0.71)。这些发现表明,罗氏 PD 移动应用程序 v2 在家中对早期 PD 患者运动迹象严重程度进行远程量化具有初步的可靠性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab2/9287320/3daa8ea57685/41598_2022_15874_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验