Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
Sci Rep. 2022 Jul 15;12(1):12098. doi: 10.1038/s41598-022-16326-9.
Longitudinal deep multiomics profiling, which combines biomolecular, physiological, environmental and clinical measures data, shows great promise for precision health. However, integrating and understanding the complexity of such data remains a big challenge. Here we utilize an individual-focused bottom-up approach aimed at first assessing single individuals' multiomics time series, and using the individual-level responses to assess multi-individual grouping based directly on similarity of their longitudinal deep multiomics profiles. We used this individual-focused approach to analyze profiles from a study profiling longitudinal responses in type 2 diabetes mellitus. After generating periodograms for individual subject omics signals, we constructed within-person omics networks and analyzed personal-level immune changes. The results identified both individual-level responses to immune perturbation, and the clusters of individuals that have similar behaviors in immune response and which were associated to measures of their diabetic status.
纵向深度多组学分析,结合生物分子、生理、环境和临床测量数据,为精准健康带来了巨大的希望。然而,整合和理解这种数据的复杂性仍然是一个巨大的挑战。在这里,我们利用一种以个体为中心的自下而上的方法,首先评估单个个体的多组学时间序列,并使用个体水平的反应,根据他们的纵向深度多组学特征的相似性,直接评估多个体的分组。我们使用这种以个体为中心的方法来分析一项研究中 2 型糖尿病纵向反应的特征。在对个体组学信号生成周期图后,我们构建了个体组学网络,并分析了个体水平的免疫变化。结果确定了个体对免疫扰动的反应,以及具有相似免疫反应行为的个体聚类,这些聚类与他们的糖尿病状态的测量值有关。