Suppr超能文献

使用自然语言处理分析患者体验:人工智能患者报告体验测量工具(AI-PREM)的开发和验证。

Analyzing patient experiences using natural language processing: development and validation of the artificial intelligence patient reported experience measure (AI-PREM).

机构信息

Information Technology & Digital Innovation Department, Leiden University Medical Center, Leiden, the Netherlands.

Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.

出版信息

BMC Med Inform Decis Mak. 2022 Jul 15;22(1):183. doi: 10.1186/s12911-022-01923-5.

Abstract

BACKGROUND

Evaluating patients' experiences is essential when incorporating the patients' perspective in improving healthcare. Experiences are mainly collected using closed-ended questions, although the value of open-ended questions is widely recognized. Natural language processing (NLP) can automate the analysis of open-ended questions for an efficient approach to patient-centeredness.

METHODS

We developed the Artificial Intelligence Patient-Reported Experience Measures (AI-PREM) tool, consisting of a new, open-ended questionnaire, an NLP pipeline to analyze the answers using sentiment analysis and topic modeling, and a visualization to guide physicians through the results. The questionnaire and NLP pipeline were iteratively developed and validated in a clinical context.

RESULTS

The final AI-PREM consisted of five open-ended questions about the provided information, personal approach, collaboration between healthcare professionals, organization of care, and other experiences. The AI-PREM was sent to 867 vestibular schwannoma patients, 534 of which responded. The sentiment analysis model attained an F1 score of 0.97 for positive texts and 0.63 for negative texts. There was a 90% overlap between automatically and manually extracted topics. The visualization was hierarchically structured into three stages: the sentiment per question, the topics per sentiment and question, and the original patient responses per topic.

CONCLUSIONS

The AI-PREM tool is a comprehensive method that combines a validated, open-ended questionnaire with a well-performing NLP pipeline and visualization. Thematically organizing and quantifying patient feedback reduces the time invested by healthcare professionals to evaluate and prioritize patient experiences without being confined to the limited answer options of closed-ended questions.

摘要

背景

在改善医疗保健服务时纳入患者视角,评估患者体验至关重要。体验主要通过封闭式问题收集获得,尽管开放式问题的价值得到广泛认可。自然语言处理(NLP)可自动化分析开放式问题,从而为以患者为中心提供一种高效方法。

方法

我们开发了人工智能患者报告体验测量工具(AI-PREM),它包含一个新的开放式问卷、一个使用情感分析和主题建模进行分析的 NLP 管道以及一个可视化工具,用于指导医生了解分析结果。该问卷和 NLP 管道在临床环境中进行了迭代开发和验证。

结果

最终的 AI-PREM 包含五个关于所提供信息、个人方法、医护人员之间的协作、护理组织和其他体验的开放式问题。向 867 名前庭神经鞘瘤患者发送了 AI-PREM,其中 534 名患者做出了回应。情感分析模型对正面文本的 F1 得分为 0.97,对负面文本的 F1 得分为 0.63。自动提取和手动提取的主题有 90%的重叠。可视化工具按三个阶段分层构建:每个问题的情感、每个情感和问题的主题、以及每个主题的原始患者回复。

结论

AI-PREM 工具是一种综合方法,它将经过验证的开放式问卷与性能良好的 NLP 管道和可视化工具相结合。主题组织和量化患者反馈可减少医疗保健专业人员评估和优先考虑患者体验所投入的时间,而不会受到封闭式问题有限答案选项的限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8565/9284859/4571cc5343fc/12911_2022_1923_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验