Canfell Oliver J, Chan Wilkin, Pole Jason D, Engstrom Teyl, Saul Tim, Daly Jacqueline, Sullivan Clair
Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
Queensland Digital Health Centre, Centre for Health Services Research, The University of Queensland, Saint Lucia, Queensland, Australia.
BMJ Health Care Inform. 2024 Dec 9;31(1):e101124. doi: 10.1136/bmjhci-2024-101124.
To co-design artificial intelligence (AI)-based clinical informatics workflows to routinely analyse patient-reported experience measures (PREMs) in hospitals.
The context was public hospitals (n=114) and health services (n=16) in a large state in Australia serving a population of ~5 million. We conducted a participatory action research study with multidisciplinary healthcare professionals, managers, data analysts, consumer representatives and industry professionals (n=16) across three phases: (1) defining the problem, (2) current workflow and co-designing a future workflow and (3) developing proof-of-concept AI-based workflows. Co-designed workflows were deductively mapped to a validated feasibility framework to inform future clinical piloting. Qualitative data underwent inductive thematic analysis.
Between 2020 and 2022 (n=16 health services), 175 282 PREMs inpatient surveys received 23 982 open-ended responses (mean response rate, 13.7%). Existing PREMs workflows were problematic due to overwhelming data volume, analytical limitations, poor integration with health service workflows and inequitable resource distribution. Three potential semiautomated, AI-based (unsupervised machine learning) workflows were developed to address the identified problems: (1) no code (simple reports, no analytics), (2) low code (PowerBI dashboard, descriptive analytics) and (3) high code (Power BI dashboard, descriptive analytics, clinical unit-level interactive reporting).
The manual analysis of free-text PREMs data is laborious and difficult at scale. Automating analysis with AI could sharpen the focus on consumer input and accelerate quality improvement cycles in hospitals. Future research should investigate how AI-based workflows impact healthcare quality and safety.
AI-based clinical informatics workflows to routinely analyse free-text PREMs data were co-designed with multidisciplinary end-users and are ready for clinical piloting.
共同设计基于人工智能(AI)的临床信息工作流程,以便在医院中常规分析患者报告的体验指标(PREMs)。
研究背景为澳大利亚一个大州的公立医院(n = 114)和卫生服务机构(n = 16),服务人口约500万。我们与多学科医疗保健专业人员、管理人员、数据分析师、消费者代表和行业专业人员(n = 16)开展了一项参与式行动研究,分为三个阶段:(1)界定问题,(2)当前工作流程以及共同设计未来工作流程,(3)开发基于AI的概念验证工作流程。将共同设计的工作流程演绎映射到一个经过验证的可行性框架,以为未来的临床试点提供信息。定性数据进行了归纳主题分析。
在2020年至2022年期间(n = 16个卫生服务机构),175282份PREMs住院患者调查问卷收到了23982份开放式回复(平均回复率为13.7%)。由于数据量巨大、分析局限性、与卫生服务工作流程整合不佳以及资源分配不均衡,现有的PREMs工作流程存在问题。开发了三种潜在的基于AI的半自动化(无监督机器学习)工作流程来解决已识别的问题:(1)无代码(简单报告,无分析),(2)低代码(PowerBI仪表板,描述性分析)和(3)高代码(PowerBI仪表板,描述性分析,临床科室级交互式报告)。
对自由文本PREMs数据进行人工分析既费力又难以规模化。使用AI自动化分析可以更加关注消费者的反馈,并加速医院的质量改进周期。未来的研究应调查基于AI的工作流程如何影响医疗质量和安全。
与多学科最终用户共同设计了用于常规分析自由文本PREMs数据的基于AI的临床信息工作流程,并且已准备好进行临床试点。