Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
Biophys J. 2022 Aug 16;121(16):3049-3060. doi: 10.1016/j.bpj.2022.07.015. Epub 2022 Jul 15.
Intrinsically disordered proteins (IDPs) play critical roles in regulatory protein interactions, but detailed structural/dynamic characterization of their ensembles remain challenging, both in isolation and when they form dynamic "fuzzy" complexes. Such is the case for mRNA cap-dependent translation initiation, which is regulated by the interaction of the predominantly folded eukaryotic initiation factor 4E (eIF4E) with the intrinsically disordered eIF4E binding proteins (4E-BPs) in a phosphorylation-dependent manner. Single-molecule Förster resonance energy transfer showed that the conformational changes of 4E-BP2 induced by binding to eIF4E are non-uniform along the sequence; while a central region containing both motifs that bind to eIF4E expands and becomes stiffer, the C-terminal region is less affected. Fluorescence anisotropy decay revealed a non-uniform segmental flexibility around six different labeling sites along the chain. Dynamic quenching of these fluorescent probes by intrinsic aromatic residues measured via fluorescence correlation spectroscopy report on transient intra- and inter-molecular contacts on nanosecond-to-microsecond timescales. Upon hyperphosphorylation, which induces folding of ∼40 residues in 4E-BP2, the quenching rates decreased at most labeling sites. The chain dynamics around sites in the C-terminal region far away from the two binding motifs significantly increased upon binding to eIF4E, suggesting that this region is also involved in the highly dynamic 4E-BP2:eIF4E complex. Our time-resolved fluorescence data paint a sequence-level rigidity map of three states of 4E-BP2 differing in phosphorylation or binding status and distinguish regions that form contacts with eIF4E. This study adds complementary structural and dynamics information to recent studies of 4E-BP2, and it constitutes an important step toward a mechanistic understanding of this important IDP via integrative modeling.
无规卷曲蛋白(IDPs)在调节蛋白相互作用中发挥着关键作用,但无论是在其孤立状态还是形成动态“模糊”复合物时,对其整体的结构/动态特征进行详细表征仍然具有挑战性。这种情况适用于依赖于mRNA 帽的翻译起始,其受主要折叠的真核起始因子 4E(eIF4E)与依赖于磷酸化的无规卷曲 eIF4E 结合蛋白(4E-BP)之间的相互作用调节。单分子Förster 共振能量转移(Förster resonance energy transfer,FRET)表明,与 eIF4E 结合时,4E-BP2 的构象变化沿序列不均匀;虽然包含与 eIF4E 结合的两个基序的中央区域扩展并变得更硬,但 C 端区域受影响较小。荧光各向异性衰减揭示了沿链的六个不同标记位置的非均匀分段柔韧性。通过荧光相关光谱法(fluorescence correlation spectroscopy,FCS)测量的固有芳香族残基对这些荧光探针的动态猝灭报告了纳秒到微秒时间尺度上的瞬时分子内和分子间接触。高度磷酸化诱导 4E-BP2 中约 40 个残基折叠,从而降低了大多数标记位置的猝灭速率。与 eIF4E 结合后,远离两个结合基序的 C 端区域的链动力学显著增加,这表明该区域也参与了高度动态的 4E-BP2:eIF4E 复合物。我们的时间分辨荧光数据描绘了 4E-BP2 的三种状态的序列水平刚性图谱,这些状态在磷酸化或结合状态上有所不同,并区分了与 eIF4E 形成接触的区域。这项研究为最近的 4E-BP2 研究提供了补充的结构和动力学信息,并为通过整合建模对这种重要 IDP 进行机制理解迈出了重要一步。