Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada.
Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.
J Phys Chem B. 2023 Aug 31;127(34):7472-7486. doi: 10.1021/acs.jpcb.3c04052. Epub 2023 Aug 18.
The intrinsically disordered 4E-BP2 protein regulates mRNA cap-dependent translation through interaction with the predominantly folded eukaryotic initiation factor 4E (eIF4E). Phosphorylation of 4E-BP2 dramatically reduces the level of eIF4E binding, in part by stabilizing a binding-incompatible folded domain. Here, we used a Rosetta-based sampling algorithm optimized for IDRs to generate initial ensembles for two phospho forms of 4E-BP2, non- and 5-fold phosphorylated (NP and 5P, respectively), with the 5P folded domain flanked by N- and C-terminal IDRs (N-IDR and C-IDR, respectively). We then applied an integrative Bayesian approach to obtain NP and 5P conformational ensembles that agree with experimental data from nuclear magnetic resonance, small-angle X-ray scattering, and single-molecule Förster resonance energy transfer (smFRET). For the NP state, inter-residue distance scaling and 2D maps revealed the role of charge segregation and pi interactions in driving contacts between distal regions of the chain (∼70 residues apart). The 5P ensemble shows prominent contacts of the N-IDR region with the two phosphosites in the folded domain, pT37 and pT46, and, to a lesser extent, delocalized interactions with the C-IDR region. Agglomerative hierarchical clustering led to partitioning of each of the two ensembles into four clusters with different global dimensions and contact maps. This helped delineate an NP cluster that, based on our smFRET data, is compatible with the eIF4E-bound state. 5P clusters were differentiated by interactions of C-IDR with the folded domain and of the N-IDR with the two phosphosites in the folded domain. Our study provides both a better visualization of fundamental structural poses of 4E-BP2 and a set of falsifiable insights on intrachain interactions that bias folding and binding of this protein.
无规则卷曲的 4E-BP2 蛋白通过与主要折叠的真核起始因子 4E(eIF4E)相互作用来调节 mRNA 帽依赖性翻译。4E-BP2 的磷酸化极大地降低了 eIF4E 结合的水平,部分原因是稳定了不兼容的折叠结构域。在这里,我们使用了一种基于 Rosetta 的采样算法,该算法针对 IDR 进行了优化,为两种磷酸化形式的 4E-BP2(非磷酸化和 5 倍磷酸化,分别为 NP 和 5P)生成了初始集合,其中 5P 折叠结构域被 N-和 C-末端 IDR(N-IDR 和 C-IDR,分别)包围。然后,我们应用了一种集成的贝叶斯方法来获得 NP 和 5P 构象集合,这些集合与来自核磁共振、小角 X 射线散射和单分子Förster 共振能量转移(smFRET)的实验数据一致。对于 NP 状态,残基间距离缩放和 2D 图谱揭示了电荷分离和π相互作用在驱动链中远端区域(相隔约 70 个残基)之间接触的作用。5P 集合显示了 N-IDR 区域与折叠结构域中的两个磷酸化位点(pT37 和 pT46)的显著接触,并且在较小程度上与 C-IDR 区域的弥散相互作用。聚合层次聚类导致将两个集合中的每一个划分为具有不同全局维度和接触图谱的四个簇。这有助于描绘出一个 NP 簇,根据我们的 smFRET 数据,该簇与 eIF4E 结合状态兼容。5P 簇通过 C-IDR 与折叠结构域的相互作用以及 N-IDR 与折叠结构域中的两个磷酸化位点的相互作用来区分。我们的研究不仅提供了对 4E-BP2 基本结构构象的更好可视化,还提供了一组关于影响该蛋白折叠和结合的链内相互作用的可验证见解。