文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 MRI 的放射组学预测同步放化疗治疗局部晚期宫颈鳞癌患者生存价值

MRI-based radiomics value for predicting the survival of patients with locally advanced cervical squamous cell cancer treated with concurrent chemoradiotherapy.

机构信息

Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

GE Healthcare, MR Research, Beijing, China.

出版信息

Cancer Imaging. 2022 Jul 16;22(1):35. doi: 10.1186/s40644-022-00474-2.


DOI:10.1186/s40644-022-00474-2
PMID:35842679
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9287951/
Abstract

BACKGROUND: To investigate the magnetic resonance imaging (MRI)-based radiomics value in predicting the survival of patients with locally advanced cervical squamous cell cancer (LACSC) treated with concurrent chemoradiotherapy (CCRT). METHODS: A total of 185 patients (training group: n = 128; testing group: n = 57) with LACSC treated with CCRT between January 2014 and December 2018 were retrospectively enrolled in this study. A total of 400 radiomics features were extracted from T2-weighted imaging, apparent diffusion coefficient map, arterial- and delayed-phase contrast-enhanced MRI. Univariate Cox regression and least absolute shrinkage and selection operator Cox regression was applied to select radiomics features and clinical characteristics that could independently predict progression-free survival (PFS) and overall survival (OS). The predictive capability of the prediction model was evaluated using Harrell's C-index. Nomograms and calibration curves were then generated. Survival curves were generated using the Kaplan-Meier method, and the log-rank test was used for comparison. RESULTS: The radiomics score achieved significantly better predictive performance for the estimation of PFS (C-index, 0.764 for training and 0.762 for testing) and OS (C-index, 0.793 for training and 0.750 for testing), compared with the 2018 FIGO staging system (C-index for PFS, 0.657 for training and 0.677 for testing; C-index for OS, 0.665 for training and 0.633 for testing) and clinical-predicting model (C-index for PFS, 0.731 for training and 0.725 for testing; C-index for OS, 0.708 for training and 0.693 for testing) (P < 0.05). The combined model constructed with T stage, lymph node metastasis position, and radiomics score achieved the best performance for the estimation of PFS (C-index, 0.792 for training and 0.809 for testing) and OS (C-index, 0.822 for training and 0.785 for testing), which were significantly higher than those of the radiomics score (P < 0.05). CONCLUSIONS: The MRI-based radiomics score could provide effective information in predicting the PFS and OS in patients with LACSC treated with CCRT. The combined model (including MRI-based radiomics score and clinical characteristics) showed the best prediction performance.

摘要

背景:为了探讨磁共振成像(MRI)基于放射组学在预测接受同期放化疗(CCRT)治疗的局部晚期宫颈鳞状细胞癌(LACSC)患者生存中的价值。

方法:本研究回顾性纳入了 2014 年 1 月至 2018 年 12 月期间接受 CCRT 治疗的 185 例 LACSC 患者(训练组:n=128;测试组:n=57)。从 T2 加权成像、表观扩散系数图、动脉期和延迟期对比增强 MRI 中提取了总共 400 个放射组学特征。采用单因素 Cox 回归和最小绝对收缩和选择算子 Cox 回归来选择能够独立预测无进展生存期(PFS)和总生存期(OS)的放射组学特征和临床特征。采用 Harrell's C 指数评估预测模型的预测能力。然后生成列线图和校准曲线。使用 Kaplan-Meier 方法生成生存曲线,并使用对数秩检验进行比较。

结果:放射组学评分在预测 PFS(C 指数,训练组为 0.764,测试组为 0.762)和 OS(C 指数,训练组为 0.793,测试组为 0.750)方面的表现明显优于 2018 年 FIGO 分期系统(PFS 的 C 指数,训练组为 0.657,测试组为 0.677;OS 的 C 指数,训练组为 0.665,测试组为 0.633)和临床预测模型(PFS 的 C 指数,训练组为 0.731,测试组为 0.725;OS 的 C 指数,训练组为 0.708,测试组为 0.693)(P<0.05)。由 T 分期、淋巴结转移位置和放射组学评分构建的联合模型在预测 PFS(C 指数,训练组为 0.792,测试组为 0.809)和 OS(C 指数,训练组为 0.822,测试组为 0.785)方面的表现最佳,明显高于放射组学评分(P<0.05)。

结论:MRI 基于放射组学评分可为接受 CCRT 治疗的 LACSC 患者的 PFS 和 OS 预测提供有效信息。联合模型(包括 MRI 基于放射组学评分和临床特征)显示出最佳的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e180/9287951/f28e75da632e/40644_2022_474_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e180/9287951/ff974ab0666b/40644_2022_474_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e180/9287951/56b8a07a9566/40644_2022_474_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e180/9287951/0c82a7c77092/40644_2022_474_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e180/9287951/e6baa4d1d82c/40644_2022_474_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e180/9287951/f28e75da632e/40644_2022_474_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e180/9287951/ff974ab0666b/40644_2022_474_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e180/9287951/56b8a07a9566/40644_2022_474_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e180/9287951/0c82a7c77092/40644_2022_474_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e180/9287951/e6baa4d1d82c/40644_2022_474_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e180/9287951/f28e75da632e/40644_2022_474_Fig5_HTML.jpg

相似文献

[1]
MRI-based radiomics value for predicting the survival of patients with locally advanced cervical squamous cell cancer treated with concurrent chemoradiotherapy.

Cancer Imaging. 2022-7-16

[2]
MRI-based radiomics for pretreatment prediction of response to concurrent chemoradiotherapy in locally advanced cervical squamous cell cancer.

Abdom Radiol (NY). 2023-1

[3]
Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer.

Eur Radiol. 2022-4

[4]
Added-value of texture analysis of ADC in predicting the survival of patients with 2018 FIGO stage IIICr cervical cancer treated by concurrent chemoradiotherapy.

Eur J Radiol. 2022-5

[5]
MRI radiomics in overall survival prediction of local advanced cervical cancer patients tread by adjuvant chemotherapy following concurrent chemoradiotherapy or concurrent chemoradiotherapy alone.

Magn Reson Imaging. 2022-9

[6]
Development and validation of a F-FDG PET/CT radiomics nomogram for predicting progression free survival in locally advanced cervical cancer: a retrospective multicenter study.

BMC Cancer. 2024-1-30

[7]
An MRI-based radiomics signature and clinical characteristics for survival prediction in early-stage cervical cancer.

Br J Radiol. 2022-1-1

[8]
A novel nomogram for predicting overall survival in patients with tongue squamous cell carcinoma using clinical features and MRI radiomics data: a pilot study.

World J Surg Oncol. 2024-8-29

[9]
Nomograms Combining Clinical and Imaging Parameters to Predict Recurrence and Disease-free Survival After Concurrent Chemoradiotherapy in Patients With Locally Advanced Cervical Cancer.

Acad Radiol. 2023-3

[10]
Prediction of out-of-field recurrence after chemoradiotherapy for cervical cancer using a combination model of clinical parameters and magnetic resonance imaging radiomics: a multi-institutional study of the Japanese Radiation Oncology Study Group.

J Radiat Res. 2022-1-20

引用本文的文献

[1]
Nomogram based on the advanced lung cancer inflammation index and other relevant clinical factors for patients with cervical squamous cell carcinoma undergoing concurrent chemoradiotherapy.

BMC Cancer. 2025-7-1

[2]
Harnessing unsupervised machine learning with [F]FDG PET/CT to develop a composite model for predicting overall survival in cervical cancer patients undergoing concurrent chemoradiotherapy.

Front Oncol. 2025-5-2

[3]
Pre-Treatment and Pre-Brachytherapy MRI first-order Radiomic Features by a Commercial software as survival predictors in radiotherapy for cervical cancer Objectives.

Clin Transl Radiat Oncol. 2025-4-19

[4]
Computed tomography-based radiomics modeling to predict patient overall survival in cervical cancer with intensity-modulated radiotherapy combined with concurrent chemotherapy.

J Int Med Res. 2025-3

[5]
Cer-ConvN3Unet: an end-to-end multi-parametric MRI-based pipeline for automated detection and segmentation of cervical cancer.

Eur Radiol Exp. 2025-2-18

[6]
Current Paradigm and Future Directions in the Management of Nodal Disease in Locally Advanced Cervical Cancer.

Cancers (Basel). 2025-1-9

[7]
Pre-treatment T2-weighted magnetic resonance radiomics for prediction of loco-regional recurrence after image-guided adaptive brachytherapy for locally advanced cervical cancer.

J Contemp Brachytherapy. 2024-6

[8]
Artificial Intelligence in Obstetric and Gynecological MR Imaging.

Magn Reson Med Sci. 2024-10-29

[9]
MRI radiomics and nutritional-inflammatory biomarkers: a powerful combination for predicting progression-free survival in cervical cancer patients undergoing concurrent chemoradiotherapy.

Cancer Imaging. 2024-10-24

[10]
Radiomic profiles improve prognostication and reveal targets for therapy in cervical cancer.

Sci Rep. 2024-5-17

本文引用的文献

[1]
A Systematic Review and Meta-Analysis of the Prognostic Impact of Pretreatment Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Parameters in Patients with Locally Advanced Cervical Cancer Treated with Concomitant Chemoradiotherapy.

Diagnostics (Basel). 2021-7-14

[2]
MRI-based radiomics: promise for locally advanced cervical cancer treated with a tailored integrated therapeutic approach.

Tumori. 2022-8

[3]
F-FDG PET/CT Habitat Radiomics Predicts Outcome of Patients with Cervical Cancer Treated with Chemoradiotherapy.

Radiol Artif Intell. 2020-11-4

[4]
Staging, recurrence and follow-up of uterine cervical cancer using MRI: Updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018.

Eur Radiol. 2021-10

[5]
The new (Version 9) American Joint Committee on Cancer tumor, node, metastasis staging for cervical cancer.

CA Cancer J Clin. 2021-7

[6]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[7]
The Biological Meaning of Radiomic Features.

Radiology. 2021-3

[8]
FIGO 2018 Staging for Cervical Cancer: Influence on Stage Distribution and Outcomes in the 3D-Image-Guided Brachytherapy Era.

Cancers (Basel). 2020-7-2

[9]
Prognostic factors in women with cervical cancer stage IIIC1r treated with concurrent chemoradiotherapy.

J Obstet Gynaecol Res. 2020-7

[10]
Validation of the 2018 FIGO Staging System of Cervical Cancer for Stage III Patients with a Cohort from China.

Cancer Manag Res. 2020-2-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索