Suppr超能文献

基于多参数磁共振成像的影像组学用于预测早期宫颈鳞癌的无病生存期

Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer.

作者信息

Zhou Yan, Gu Hai-Lei, Zhang Xin-Lu, Tian Zhong-Fu, Xu Xiao-Quan, Tang Wen-Wei

机构信息

Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Gulou District, No. 300, Guangzhou Rd, Nanjing, 210029, People's Republic of China.

Department of Radiology, Women's Hospital of Nanjing Medical University, No. 123, Mochou Rd, Qinhuai District, Nanjing, 210029, People's Republic of China.

出版信息

Eur Radiol. 2022 Apr;32(4):2540-2551. doi: 10.1007/s00330-021-08326-6. Epub 2021 Oct 12.

Abstract

OBJECTIVE

To conduct multiparametric magnetic resonance imaging (MRI)-derived radiomics based on multi-scale tumor region for predicting disease-free survival (DFS) in early-stage squamous cervical cancer (ESSCC).

METHODS

A total of 191 ESSCC patients (training cohort, n = 135; validation cohort, n = 56) from March 2016 to September 2019 were retrospectively recruited. Radiomics features were derived from the T2-weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CET1WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) map for each patient. DFS-related radiomics features were selected in 3 target tumor volumes (VOI, VOI, and VOI) to build 3 rad-scores using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Logistic regression was applied to build combined model incorporating rad-scores with clinical risk factors and compared with clinical model alone. Kaplan-Meier analysis was used to further validate prognostic value of selected clinical and radiomics characteristics.

RESULTS

Three radiomics scores all showed favorable performances in DFS prediction. Rad-score (VOI) performed best with a C-index of 0.750 in the training set and 0.839 in the validation set. Combined model was constructed by incorporating age categorized by 55, Federation of Gynecology and Obstetrics (Figo) stage, and lymphovascular space invasion with rad-score (VOI). Combined model performed better than clinical model in DFS prediction in both the training set (C-index 0.815 vs 0.709; p = 0.024) and the validation set (C-index 0.866 vs 0.719; p = 0.001).

CONCLUSION

Multiparametric MRI-derived radiomics based on multi-scale tumor region can aid in the prediction of DFS for ESSCC patients, thereby facilitating clinical decision-making.

KEY POINTS

• Three radiomics scores based on multi-scale tumor region all showed favorable performances in DFS prediction. Rad-score (VOI) performed best with favorable C-index values. • Combined model incorporating multiparametric MRI-based radiomics with clinical risk factors performed significantly better in DFS prediction than the clinical model. • Combined model presented as a nomogram can be easily used to predict survival, thereby facilitating clinical decision-making.

摘要

目的

基于多尺度肿瘤区域进行多参数磁共振成像(MRI)衍生的放射组学分析,以预测早期宫颈鳞癌(ESSCC)的无病生存期(DFS)。

方法

回顾性纳入2016年3月至2019年9月期间的191例ESSCC患者(训练队列,n = 135;验证队列,n = 56)。从每位患者的T2加权成像(T2WI)、对比增强T1加权成像(CET1WI)、扩散加权成像(DWI)和表观扩散系数(ADC)图中提取放射组学特征。在3个目标肿瘤体积(VOI、VOI和VOI)中选择与DFS相关的放射组学特征,使用最小绝对收缩和选择算子(LASSO)Cox回归分析构建3个放射学评分(rad-score)。应用逻辑回归构建将放射学评分与临床危险因素相结合的联合模型,并与单独的临床模型进行比较。采用Kaplan-Meier分析进一步验证所选临床和放射组学特征的预后价值。

结果

三个放射学评分在DFS预测中均表现出良好性能。放射学评分(VOI)表现最佳,训练集的C指数为0.750,验证集为0.839。联合模型通过将年龄(按55岁分类)、国际妇产科联盟(FIGO)分期和脉管间隙浸润与放射学评分(VOI)相结合构建。联合模型在训练集(C指数0.815对0.709;p = 0.024)和验证集(C指数0.866对0.719;p = 0.001)的DFS预测中均优于临床模型。

结论

基于多尺度肿瘤区域的多参数MRI衍生放射组学有助于预测ESSCC患者的DFS,从而促进临床决策。

关键点

• 基于多尺度肿瘤区域的三个放射学评分在DFS预测中均表现出良好性能。放射学评分(VOI)表现最佳,C指数值良好。• 将基于多参数MRI的放射组学与临床危险因素相结合的联合模型在DFS预测中明显优于临床模型。• 以列线图形式呈现的联合模型可轻松用于预测生存,从而促进临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验