Suppr超能文献

现代流行病学学生的实用数据考量

Practical data considerations for the modern epidemiology student.

作者信息

Tran Nguyen K, Lash Timothy L, Goldstein Neal D

机构信息

Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA.

Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.

出版信息

Glob Epidemiol. 2021 Nov;3. doi: 10.1016/j.gloepi.2021.100066. Epub 2021 Nov 19.

Abstract

As an inherent part of epidemiologic research, practical decisions made during data collection and analysis have the potential to impact the measurement of disease occurrence as well as statistical and causal inference from the results. However, the computational skills needed to collect, manipulate, and evaluate data have not always been a focus of educational programs, and the increasing interest in "data science" suggest that data literacy has become paramount to ensure valid estimation. In this article, we first motivate such practical concerns for the modern epidemiology student, particularly as it relates to challenges in causal inference; second, we discuss how such concerns may be manifested in typical epidemiological analyses and identify the potential for bias; third, we present a case study that exemplifies the entire process; and finally, we draw attention to resources that can help epidemiology students connect the theoretical underpinning of the science to the practical considerations as described herein.

摘要

作为流行病学研究的一个固有部分,在数据收集和分析过程中做出的实际决策有可能影响疾病发生率的测量以及结果的统计和因果推断。然而,收集、处理和评估数据所需的计算技能并非一直是教育项目的重点,而对“数据科学”日益增长的兴趣表明,数据素养已成为确保有效估计的关键。在本文中,我们首先激发现代流行病学学生对这类实际问题的关注,特别是与因果推断中的挑战相关的问题;其次,我们讨论这些问题在典型的流行病学分析中可能如何表现,并识别偏差的可能性;第三,我们展示一个案例研究,以例证整个过程;最后,我们提请注意一些资源,这些资源可以帮助流行病学学生将该学科的理论基础与本文所述的实际考量联系起来。

相似文献

1
Practical data considerations for the modern epidemiology student.现代流行病学学生的实用数据考量
Glob Epidemiol. 2021 Nov;3. doi: 10.1016/j.gloepi.2021.100066. Epub 2021 Nov 19.
5
On the Convergence of Epidemiology, Biostatistics, and Data Science.论流行病学、生物统计学与数据科学的融合
Harv Data Sci Rev. 2020 Spring;2(2). doi: 10.1162/99608f92.9f0215e6. Epub 2020 Apr 30.
10
Teaching epidemiologic methods.讲授流行病学方法。
Epidemiology. 2008 Mar;19(2):353-6. doi: 10.1097/EDE.0b013e318163d294.

本文引用的文献

1
On the Convergence of Epidemiology, Biostatistics, and Data Science.论流行病学、生物统计学与数据科学的融合
Harv Data Sci Rev. 2020 Spring;2(2). doi: 10.1162/99608f92.9f0215e6. Epub 2020 Apr 30.
4
Reflections on modern methods: linkage error bias.关于现代方法的思考:连锁错误偏差。
Int J Epidemiol. 2019 Dec 1;48(6):2050-2060. doi: 10.1093/ije/dyz203.
5
Resource Sharing to Improve Research Quality.资源共享以提高研究质量。
J Am Heart Assoc. 2019 Aug 6;8(15):e012292. doi: 10.1161/JAHA.119.012292. Epub 2019 Jul 31.
6
Principles of confounder selection.混杂因素选择原则。
Eur J Epidemiol. 2019 Mar;34(3):211-219. doi: 10.1007/s10654-019-00494-6. Epub 2019 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验