Suppr超能文献

应用机器学习方法阐明在接受阿特珠单抗治疗的 NSCLC 患者中血液检测生物标志物预测免疫相关不良事件的应用。

Elucidation of the Application of Blood Test Biomarkers to Predict Immune-Related Adverse Events in Atezolizumab-Treated NSCLC Patients Using Machine Learning Methods.

机构信息

Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.

Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.

出版信息

Front Immunol. 2022 Jun 30;13:862752. doi: 10.3389/fimmu.2022.862752. eCollection 2022.

Abstract

BACKGROUND

Development of severe immune-related adverse events (irAEs) is a major predicament to stop treatment with immune checkpoint inhibitors, even though tumor progression is suppressed. However, no effective early phase biomarker has been established to predict irAE until now.

METHOD

This study retrospectively used the data of four international, multi-center clinical trials to investigate the application of blood test biomarkers to predict irAEs in atezolizumab-treated advanced non-small cell lung cancer (NSCLC) patients. Seven machine learning methods were exploited to dissect the importance score of 21 blood test biomarkers after 1,000 simulations by the training cohort consisting of 80%, 70%, and 60% of the combined cohort with 1,320 eligible patients.

RESULTS

XGBoost and LASSO exhibited the best performance in this study with relatively higher consistency between the training and test cohorts. The best area under the curve (AUC) was obtained by a 10-biomarker panel using the XGBoost method for the 8:2 training:test cohort ratio (training cohort AUC = 0.692, test cohort AUC = 0.681). This panel could be further narrowed down to a three-biomarker panel consisting of C-reactive protein (CRP), platelet-to-lymphocyte ratio (PLR), and thyroid-stimulating hormone (TSH) with a small median AUC difference using the XGBoost method [for the 8:2 training:test cohort ratio, training cohort AUC difference = -0.035 (p < 0.0001), and test cohort AUC difference = 0.001 (p=0.965)].

CONCLUSION

Blood test biomarkers currently do not have sufficient predictive power to predict irAE development in atezolizumab-treated advanced NSCLC patients. Nevertheless, biomarkers related to adaptive immunity and liver or thyroid dysfunction warrant further investigation.

摘要

背景

尽管肿瘤进展得到抑制,但严重的免疫相关不良事件(irAE)的发展仍是停止免疫检查点抑制剂治疗的主要困境。然而,到目前为止,还没有建立有效的早期生物标志物来预测 irAE。

方法

本研究回顾性地使用四项国际多中心临床试验的数据,研究了血液检测生物标志物在预测接受阿替利珠单抗治疗的晚期非小细胞肺癌(NSCLC)患者 irAE 中的应用。利用七种机器学习方法,通过由 80%、70%和 60%的联合队列(共 1320 名合格患者)组成的训练队列进行 1000 次模拟,剖析 21 种血液检测生物标志物的重要性评分。

结果

XGBoost 和 LASSO 在本研究中表现最佳,训练和测试队列之间的一致性相对较高。使用 XGBoost 方法,在 8:2 的训练:测试队列比(训练队列 AUC=0.692,测试队列 AUC=0.681)中,最佳曲线下面积(AUC)是通过 10 个生物标志物面板获得的。该面板可以通过 XGBoost 方法进一步缩小为包含 C 反应蛋白(CRP)、血小板与淋巴细胞比值(PLR)和促甲状腺激素(TSH)的三个生物标志物面板,其 AUC 差异较小[对于 8:2 的训练:测试队列比,训练队列 AUC 差异= -0.035(p<0.0001),测试队列 AUC 差异=0.001(p=0.965)]。

结论

目前,血液检测生物标志物还没有足够的预测能力来预测接受阿替利珠单抗治疗的晚期 NSCLC 患者 irAE 的发生。然而,与适应性免疫和肝或甲状腺功能障碍相关的生物标志物值得进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验