Suppr超能文献

用于预测头颈部鳞状细胞癌免疫治疗反应的机器学习模型的验证

Validation of a Machine Learning Model to Predict Immunotherapy Response in Head and Neck Squamous Cell Carcinoma.

作者信息

Lee Andrew Sangho, Valero Cristina, Yoo Seong-Keun, Vos Joris L, Chowell Diego, Morris Luc G T

机构信息

Head and Neck Service and Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

Cancers (Basel). 2023 Dec 29;16(1):175. doi: 10.3390/cancers16010175.

Abstract

Head and neck squamous-cell carcinoma (HNSCC) is a disease with a generally poor prognosis; half of treated patients eventually develop recurrent and/or metastatic (R/M) disease. Patients with R/M HNSCC generally have incurable disease with a median survival of 10 to 15 months. Although immune-checkpoint blockade (ICB) has improved outcomes in patients with R/M HNSCC, identifying patients who are likely to benefit from ICB remains a challenge. Biomarkers in current clinical use include tumor mutational burden and immunohistochemistry for programmed death-ligand 1, both of which have only modest predictive power. Machine learning (ML) has the potential to aid in clinical decision-making as an approach to estimate a tumor's likelihood of response or a patient's likelihood of experiencing clinical benefit from therapies such as ICB. Previously, we described a random forest ML model that had value in predicting ICB response using 11 or 16 clinical, laboratory, and genomic features in a pan-cancer development cohort. However, its applicability to certain cancer types, such as HNSCC, has been unknown, due to a lack of cancer-type-specific validation. Here, we present the first validation of a random forest ML tool to predict the likelihood of ICB response in patients with R/M HNSCC. The tool had adequate predictive power for tumor response (area under the receiver operating characteristic curve = 0.65) and was able to stratify patients by overall (HR = 0.53 [95% CI 0.29-0.99], = 0.045) and progression-free (HR = 0.49 [95% CI 0.27-0.87], = 0.016) survival. The overall accuracy was 0.72. Our study validates an ML predictor in HNSCC, demonstrating promising performance in a novel cohort of patients. Further studies are needed to validate the generalizability of this algorithm in larger patient samples from additional multi-institutional contexts.

摘要

头颈部鳞状细胞癌(HNSCC)是一种预后普遍较差的疾病;半数接受治疗的患者最终会发展为复发和/或转移性(R/M)疾病。R/M HNSCC患者的疾病通常无法治愈,中位生存期为10至15个月。尽管免疫检查点阻断(ICB)改善了R/M HNSCC患者的预后,但识别可能从ICB中获益的患者仍然是一项挑战。目前临床使用的生物标志物包括肿瘤突变负荷和程序性死亡配体1的免疫组织化学检测,两者的预测能力都很有限。机器学习(ML)有潜力作为一种方法来辅助临床决策,以估计肿瘤对治疗产生反应的可能性或患者从ICB等治疗中获得临床益处的可能性。此前,我们描述了一种随机森林ML模型,该模型在泛癌发展队列中使用11或16个临床、实验室和基因组特征预测ICB反应方面具有价值。然而,由于缺乏癌症类型特异性验证,其在某些癌症类型(如HNSCC)中的适用性尚不清楚。在此,我们首次验证了一种随机森林ML工具,以预测R/M HNSCC患者ICB反应的可能性。该工具对肿瘤反应具有足够的预测能力(受试者操作特征曲线下面积 = 0.65),并能够根据总生存期(HR = 0.53 [95% CI 0.29 - 0.99],P = 0.045)和无进展生存期(HR = 0.49 [95% CI 0.27 - 0.87],P = 0.016)对患者进行分层。总体准确率为0.72。我们的研究验证了HNSCC中的一种ML预测指标,在一组新的患者中显示出有前景的性能。需要进一步的研究来验证该算法在来自其他多机构环境的更大患者样本中的可推广性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc8d/10778506/086b1d55b3bb/cancers-16-00175-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验