Suppr超能文献

使用机器学习模型预测早发型子痫前期诊断后7天内分娩情况

Prediction of Delivery Within 7 Days After Diagnosis of Early Onset Preeclampsia Using Machine-Learning Models.

作者信息

Villalaín Cecilia, Herraiz Ignacio, Domínguez-Del Olmo Paula, Angulo Pablo, Ayala José Luis, Galindo Alberto

机构信息

Fetal Medicine Unit, Department of Obstetrics and Gynecology, University Hospital "12 de Octubre", Research Institute Hospital 12 de Octubre (imas12), Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS Network), Complutense University of Madrid, Madrid, Spain.

Department of Computer Architecture and Automation, Faculty of Informatics of the Complutense University, Madrid, Spain.

出版信息

Front Cardiovasc Med. 2022 Jul 1;9:910701. doi: 10.3389/fcvm.2022.910701. eCollection 2022.

Abstract

BACKGROUND

Early onset preeclampsia (eoPE) is a hypertensive disorder of pregnancy with endothelial dysfunction manifested before 34 weeks where expectant management is usually attempted. However, the timing of hospitalization, corticosteroids, and delivery remain a challenge. We aim to develop a prediction model using machine-learning tools for the need for delivery within 7 days of diagnosis (model D) and the risk of developing hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome or (model HA).

MATERIALS AND METHODS

A retrospective cohort of singleton pregnancies with eoPE and attempted expectant management between 2014 and 2020. A Mono-objective Genetic Algorithm based on supervised classification models was implemented to develop D and HA models. Maternal basal characteristics and data gathered during eoPE diagnosis: gestational age, blood pressure, platelets, creatinine, transaminases, angiogenesis biomarkers (soluble fms-like tyrosine kinase-1, placental growth factor), and ultrasound data were pooled for analysis. The most relevant variables were selected by bio-inspired algorithms. We developed basal models that solely included demographic characteristics of the patient (D1, HA1), and advanced models adding information available at diagnosis of eoPE (D2, HA2).

RESULTS

We evaluated 215 eoPE cases and 47.9% required delivery within 7 days. The median time-to-delivery was 8 days. Basal models were better predicted by K-nearest-neighbor in D1, which had a diagnostic precision of 0.68 ± 0.09, with 63.6% sensitivity (Sn), 71.4% specificity (Sp), 70% positive predictive value (PPV), and 65.2% negative predictive value (NPV) using 13 variables and HA1 of 0.77 ± 0.09, 60.4% Sn, 80% Sp, 50% PPV, and 87.9% NPV. Models at diagnosis were better developed by support vector machine (SVM) using 18 variables, where D2's precision improved to 0.79 ± 0.05 with 77.3% Sn, 80.1% Sp, 81.5% PPV, and 76.2% NPV, and HA2 had a precision of 0.79 ± 0.08 with 66.7% Sn, 82.8% Sp, 51.6% PPV, and 90.3% NPV.

CONCLUSION

At the time of diagnosis of eoPE, SVM with evolutionary feature selection process provides good predictive information of the need for delivery within 7 days and development of HELLP/, using maternal characteristics and markers that can be obtained routinely. This information could be of value when assessing hospitalization and timing of antenatal corticosteroid administration.

摘要

背景

早发型子痫前期(eoPE)是一种妊娠期高血压疾病,伴有内皮功能障碍,在孕34周前出现,通常尝试进行期待治疗。然而,住院时机、使用糖皮质激素和分娩时机仍然是一个挑战。我们旨在使用机器学习工具开发一种预测模型,用于预测诊断后7天内分娩的需求(模型D)以及发生溶血、肝酶升高和血小板减少(HELLP)综合征的风险(模型HA)。

材料与方法

对2014年至2020年间单胎妊娠且尝试进行期待治疗的eoPE患者进行回顾性队列研究。基于监督分类模型实施单目标遗传算法来开发D和HA模型。汇总eoPE诊断期间收集的产妇基础特征和数据:孕周、血压、血小板、肌酐、转氨酶、血管生成生物标志物(可溶性fms样酪氨酸激酶-1、胎盘生长因子)以及超声数据进行分析。通过生物启发算法选择最相关的变量。我们开发了仅包含患者人口统计学特征的基础模型(D1、HA1),以及添加eoPE诊断时可用信息的高级模型(D2、HA2)。

结果

我们评估了215例eoPE病例,其中47.9%的患者在7天内需要分娩。中位分娩时间为8天。在D1中,K近邻算法对基础模型的预测效果更好,其诊断精度为0.68±0.09,使用13个变量时灵敏度(Sn)为63.6%,特异度(Sp)为71.4%,阳性预测值(PPV)为70%,阴性预测值(NPV)为65.2%;HA1的诊断精度为0.77±0.09,Sn为60.4%,Sp为80%,PPV为50%,NPV为87.9%。诊断时的模型通过支持向量机(SVM)使用18个变量能更好地构建,其中D2的精度提高到0.79±0.05,Sn为77.3%,Sp为80.1%,PPV为81.5%,NPV为76.2%;HA2的精度为0.79±0.08,Sn为66.7%,Sp为82.8%,PPV为51.6%,NPV为90.3%。

结论

在eoPE诊断时,具有进化特征选择过程的支持向量机利用可常规获取的产妇特征和标志物,能提供关于7天内分娩需求以及HELLP综合征发生风险的良好预测信息。在评估住院和产前糖皮质激素给药时机时,这些信息可能具有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a9c/9283699/971d50836a7a/fcvm-09-910701-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验