Suppr超能文献

DIMASS:一种受德劳内启发的、用于智能体团队搜索策略的混合方法。

DIMASS: A Delaunay-Inspired, Hybrid Approach to a Team of Agents Search Strategy.

作者信息

Yusuf Sagir M, Baber Chris

机构信息

School of Computer Science, University of Birmingham, Birmingham, United Kingdom.

出版信息

Front Robot AI. 2022 Jun 29;9:851846. doi: 10.3389/frobt.2022.851846. eCollection 2022.

Abstract

This article describes an approach for multiagent search planning for a team of agents. A team of UAVs tasked to conduct a forest fire search was selected as the use case, although solutions are applicable to other domains. Fixed-path (e.g., parallel track) methods for multiagent search can produce predictable and structured paths, with the main limitation being poor management of agents' resources and limited adaptability (i.e., based on predefined geometric paths, e.g., parallel track, expanding square, etc.). On the other hand, pseudorandom methods allow agents to generate well-separated paths; but methods can be computationally expensive and can result in a lack of coordination of agents' activities. We present a hybrid solution that exploits the complementary strengths of fixed-pattern and pseudorandom methods, i.e., an approach that is resource-efficient, predictable, adaptable, and scalable. Our approach evolved from the Delaunay triangulation of systematically selected waypoints to allocate agents to explore a specific region while optimizing a given set of mission constraints. We implement our approach in a simulation environment, comparing the performance of the proposed algorithm with fixed-path and pseudorandom baselines. Results proved agents' resource utilization, predictability, scalability, and adaptability of the developed path. We also demonstrate the proposed algorithm's application on real UAVs.

摘要

本文描述了一种用于多智能体团队的搜索规划方法。以一组执行森林火灾搜索任务的无人机作为用例,尽管该解决方案也适用于其他领域。多智能体搜索的固定路径(例如平行轨道)方法可以产生可预测且结构化的路径,其主要局限性在于对智能体资源的管理不佳以及适应性有限(即基于预定义的几何路径,例如平行轨道、扩展正方形等)。另一方面,伪随机方法允许智能体生成间隔良好的路径;但这些方法计算成本高,并且可能导致智能体活动缺乏协调性。我们提出了一种混合解决方案,该方案利用了固定模式和伪随机方法的互补优势,即一种资源高效、可预测、适应性强且可扩展的方法。我们的方法从对系统选择的航路点进行德劳内三角剖分演变而来,以分配智能体探索特定区域,同时优化给定的一组任务约束。我们在模拟环境中实现了我们的方法,将所提出算法的性能与固定路径和伪随机基线进行了比较。结果证明了所开发路径在智能体资源利用、可预测性、可扩展性和适应性方面的优势。我们还展示了所提出算法在实际无人机上的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447a/9277356/27550ef543fd/frobt-09-851846-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验