Suppr超能文献

一种具有可控制重访和连通性维护的多架无人机协同搜索和覆盖算法。

A Cooperative Search and Coverage Algorithm with Controllable Revisit and Connectivity Maintenance for Multiple Unmanned Aerial Vehicles.

机构信息

School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Sensors (Basel). 2018 May 8;18(5):1472. doi: 10.3390/s18051472.

Abstract

In this paper, we mainly study a cooperative search and coverage algorithm for a given bounded rectangle region, which contains several unknown stationary targets, by a team of unmanned aerial vehicles (UAVs) with non-ideal sensors and limited communication ranges. Our goal is to minimize the search time, while gathering more information about the environment and finding more targets. For this purpose, a novel cooperative search and coverage algorithm with controllable revisit mechanism is presented. Firstly, as the representation of the environment, the cognitive maps that included the target probability map (TPM), the uncertain map (UM), and the digital pheromone map (DPM) are constituted. We also design a distributed update and fusion scheme for the cognitive map. This update and fusion scheme can guarantee that each one of the cognitive maps converges to the same one, which reflects the targets’ true existence or absence in each cell of the search region. Secondly, we develop a controllable revisit mechanism based on the DPM. This mechanism can concentrate the UAVs to revisit sub-areas that have a large target probability or high uncertainty. Thirdly, in the frame of distributed receding horizon optimizing, a path planning algorithm for the multi-UAVs cooperative search and coverage is designed. In the path planning algorithm, the movement of the UAVs is restricted by the potential fields to meet the requirements of avoiding collision and maintaining connectivity constraints. Moreover, using the minimum spanning tree (MST) topology optimization strategy, we can obtain a tradeoff between the search coverage enhancement and the connectivity maintenance. The feasibility of the proposed algorithm is demonstrated by comparison simulations by way of analyzing the effects of the controllable revisit mechanism and the connectivity maintenance scheme. The Monte Carlo method is employed to validate the influence of the number of UAVs, the sensing radius, the detection and false alarm probabilities, and the communication range on the proposed algorithm.

摘要

在本文中,我们主要研究了由一队具有非理想传感器和有限通信范围的无人机(UAV)对包含若干未知固定目标的给定有界矩形区域进行的合作搜索和覆盖算法。我们的目标是在最小化搜索时间的同时,收集更多有关环境的信息并找到更多目标。为此,提出了一种具有可控重访机制的新型合作搜索和覆盖算法。首先,作为环境的表示,构成了包含目标概率图(TPM)、不确定图(UM)和数字信息素图(DPM)的认知图。我们还设计了认知图的分布式更新和融合方案。该更新和融合方案可以保证每个认知图都收敛到相同的认知图,该认知图反映了搜索区域每个单元中目标的真实存在或不存在。其次,我们基于 DPM 开发了一种可控重访机制。该机制可以使无人机集中在目标概率或不确定性较大的子区域进行重访。第三,在分布式滚动优化框架内,设计了一种多无人机合作搜索和覆盖的路径规划算法。在路径规划算法中,无人机的运动受到势场的限制,以满足避免碰撞和保持连通性约束的要求。此外,使用最小生成树(MST)拓扑优化策略,可以在增强搜索覆盖范围和保持连通性之间取得折衷。通过分析可控重访机制和连通性维护方案的效果,通过比较模拟验证了所提出算法的可行性。采用蒙特卡罗方法验证了无人机数量、感测半径、检测和虚警概率以及通信范围对所提出算法的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b02/5982467/a474cb1918ab/sensors-18-01472-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验