Coats Thomas, Bean Daniel, Vatopoulou Theodora, Vijayavalli Dhanapal, El-Bashir Razan, Panopoulou Aikaterini, Wood Henry, Wimalachandra Manujasri, Coppell Jason, Medd Patrick, Furtado Michelle, Tucker David, Kulasakeraraj Austin, Pawade Joya, Dobson Richard, Ireland Robin
Department of Haematology Royal Devon and Exeter NHS Foundation Trust Exeter UK.
Biostatistics and Health Informatics King's College London London UK.
EJHaem. 2021 Mar 26;2(2):261-265. doi: 10.1002/jha2.182. eCollection 2021 May.
Accurate, reproducible diagnoses can be difficult to make in haemato-oncology due to multi-parameter clinical data, complex diagnostic criteria and time-pressured environments. We have designed a decision tree application (DTA) that reflects WHO diagnostic criteria to support accurate diagnoses of myeloid malignancies. The DTA returned the correct diagnoses in 94% of clinical cases tested. The DTA maintained a high level of accuracy in a second validation using artificially generated clinical cases. Optimisations have been made to the DTA based on the validations, and the revised version is now publicly available for use at http://bit.do/ADAtool.
由于存在多参数临床数据、复杂的诊断标准以及时间紧迫的环境,血液肿瘤学中准确、可重复的诊断可能很难做出。我们设计了一种决策树应用程序(DTA),该程序反映了世界卫生组织的诊断标准,以支持对髓系恶性肿瘤进行准确诊断。在94%的测试临床病例中,DTA给出了正确诊断。在使用人工生成的临床病例进行的第二次验证中,DTA保持了较高的准确性。基于这些验证对DTA进行了优化,修订版现在可在http://bit.do/ADAtool上公开使用。