Suppr超能文献

一个开源的、由专家设计的决策树应用程序,用于支持髓系恶性肿瘤的准确诊断。

An open-source, expert-designed decision tree application to support accurate diagnosis of myeloid malignancies.

作者信息

Coats Thomas, Bean Daniel, Vatopoulou Theodora, Vijayavalli Dhanapal, El-Bashir Razan, Panopoulou Aikaterini, Wood Henry, Wimalachandra Manujasri, Coppell Jason, Medd Patrick, Furtado Michelle, Tucker David, Kulasakeraraj Austin, Pawade Joya, Dobson Richard, Ireland Robin

机构信息

Department of Haematology Royal Devon and Exeter NHS Foundation Trust Exeter UK.

Biostatistics and Health Informatics King's College London London UK.

出版信息

EJHaem. 2021 Mar 26;2(2):261-265. doi: 10.1002/jha2.182. eCollection 2021 May.

Abstract

Accurate, reproducible diagnoses can be difficult to make in haemato-oncology due to multi-parameter clinical data, complex diagnostic criteria and time-pressured environments. We have designed a decision tree application (DTA) that reflects WHO diagnostic criteria to support accurate diagnoses of myeloid malignancies. The DTA returned the correct diagnoses in 94% of clinical cases tested. The DTA maintained a high level of accuracy in a second validation using artificially generated clinical cases. Optimisations have been made to the DTA based on the validations, and the revised version is now publicly available for use at http://bit.do/ADAtool.

摘要

由于存在多参数临床数据、复杂的诊断标准以及时间紧迫的环境,血液肿瘤学中准确、可重复的诊断可能很难做出。我们设计了一种决策树应用程序(DTA),该程序反映了世界卫生组织的诊断标准,以支持对髓系恶性肿瘤进行准确诊断。在94%的测试临床病例中,DTA给出了正确诊断。在使用人工生成的临床病例进行的第二次验证中,DTA保持了较高的准确性。基于这些验证对DTA进行了优化,修订版现在可在http://bit.do/ADAtool上公开使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b018/9175663/96644a257836/JHA2-2-261-g001.jpg

相似文献

本文引用的文献

4
esyN: network building, sharing and publishing.esyN:网络构建、共享与发布。
PLoS One. 2014 Sep 2;9(9):e106035. doi: 10.1371/journal.pone.0106035. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验