Suppr超能文献

基于 BES-LSSVM 的食管鳞癌生存风险预测。

Survival Risk Prediction of Esophageal Squamous Cell Carcinoma Based on BES-LSSVM.

机构信息

School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China.

State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450066, China.

出版信息

Comput Intell Neurosci. 2022 Jul 6;2022:3895590. doi: 10.1155/2022/3895590. eCollection 2022.

Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the highest incidence and mortality cancers in the world. An effective survival prediction model can improve the quality of patients' survival. In this study, ten indicators related to the survival of patients with ESCC are founded using genetic algorithm feature selection. The prognostic index (PI) for ESCC is established using the binary logistic regression. PI is divided into four stages, and each stage can reasonably reflect the survival status of different patients. By plotting the ROC curve, the critical threshold of patients' age could be found, and patients are divided into the high-age groups and the low-age groups. PI and ten survival-related indicators are used as independent variables, based on the bald eagle search (BES) and least-squares support vector machine (LSSVM), and a survival prediction model for patients with ESCC is established. The results show that five-year survival rates of patients are well predicted by the bald eagle search-least-squares support vector machine (BES-LSSVM). BES-LSSVM has higher prediction accuracy than the existing particle swarm optimization-least-squares support vector machine (PSO-LSSVM), grasshopper optimization algorithm-least-squares support vector machine (GOA-LSSVM), differential evolution-least-squares support vector machine (DE-LSSVM), sparrow search algorithm-least-squares support vector machine (SSA-LSSVM), bald eagle search-back propagation neural network (BES-BPNN), and bald eagle search-extreme learning machine (BES-ELM).

摘要

食管鳞状细胞癌(ESCC)是世界上发病率和死亡率最高的癌症之一。有效的生存预测模型可以提高患者生存质量。本研究采用遗传算法特征选择,找到了与 ESCC 患者生存相关的十个指标。采用二项逻辑回归建立 ESCC 预后指数(PI)。PI 分为四个阶段,每个阶段都能合理反映不同患者的生存状况。通过绘制 ROC 曲线,确定了患者年龄的临界阈值,将患者分为高龄组和低龄组。以 PI 和十个生存相关指标为自变量,基于秃鹰搜索(BES)和最小二乘支持向量机(LSSVM),建立了 ESCC 患者生存预测模型。结果表明,秃鹰搜索-最小二乘支持向量机(BES-LSSVM)对患者的五年生存率有较好的预测效果。BES-LSSVM 的预测精度高于现有的粒子群优化-最小二乘支持向量机(PSO-LSSVM)、食诱算法-最小二乘支持向量机(GOA-LSSVM)、差分进化-最小二乘支持向量机(DE-LSSVM)、麻雀搜索算法-最小二乘支持向量机(SSA-LSSVM)、秃鹰搜索-反向传播神经网络(BES-BPNN)和秃鹰搜索-极限学习机(BES-ELM)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1d9/9279059/270e7ea33899/CIN2022-3895590.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验