Domine Florent, Fourteau Kévin, Picard Ghislain, Lackner Georg, Sarrazin Denis, Poirier Mathilde
Takuvik Joint International Laboratory, Université Laval (Canada) and CNRS-INSU (France), Québec, Canada.
Centre d'Études Nordiques, Université Laval, Québec, Canada.
Nat Geosci. 2022;15(7):554-560. doi: 10.1038/s41561-022-00979-2. Epub 2022 Jul 7.
Considerable expansion of shrubs across the Arctic tundra has been observed in recent decades. These shrubs are thought to have a warming effect on permafrost by increasing snowpack thermal insulation, thereby limiting winter cooling and accelerating thaw. Here, we use ground temperature observations and heat transfer simulations to show that low shrubs can actually cool the ground in winter by providing a thermal bridge through the snowpack. Observations from unmanipulated herb tundra and shrub tundra sites on Bylot Island in the Canadian high Arctic reveal a 1.21 °C cooling effect between November and February. This is despite a snowpack that is twice as insulating in shrubs. The thermal bridging effect is reversed in spring when shrub branches absorb solar radiation and transfer heat to the ground. The overall thermal effect is likely to depend on snow and shrub characteristics and terrain aspect. The inclusion of these thermal bridging processes into climate models may have an important impact on projected greenhouse gas emissions by permafrost.
近几十年来,北极苔原上的灌木出现了显著扩张。这些灌木被认为通过增加积雪的隔热作用对永久冻土产生变暖效应,从而限制冬季降温并加速解冻。在此,我们利用地温观测和热传导模拟表明,低矮灌木实际上可以通过在积雪中形成热桥在冬季使地面降温。在加拿大北极地区比洛特岛未受干扰的草本苔原和灌木苔原站点的观测显示,11月至2月间有1.21°C的降温效应。尽管灌木中的积雪隔热效果是草本的两倍。当灌木枝条在春季吸收太阳辐射并将热量传递给地面时,热桥效应会逆转。总体热效应可能取决于积雪和灌木特征以及地形。将这些热桥过程纳入气候模型可能会对永久冻土预计的温室气体排放产生重要影响。